小红书q-q小程序接口和滑块验证

由于v-x小程序新增了滑块校验参数,暂时无法破解,这里可以转战q-q小程序,数据跟v-x的是一样的

部分搜索接口
在这里插入图片描述

当然采集过频繁也会出滑块,不过出现的频率没有v-x那么高

在这里插入图片描述

想了解的可以看主页联系

### 小红书自动化浏览、随机评论回复的技术实现 #### 使用Selenium进行小红书自动化的基础设置 为了实现小红书的自动化浏览功能,可以通过 `selenium` 结合 Chrome 或其他浏览器驱动来完成。以下是初始化 WebDriver 的基本代码: ```python from selenium import webdriver def get_driver(): """ 获取WebDriver路径 """ return "/path/to/chromedriver" browser = webdriver.Chrome(executable_path=get_driver()) ``` 上述代码展示了如何调用 Chrome 驱动并生成浏览器对象[^1]。 #### 安装必要的依赖库 在开始编写爬虫程序前,需确保已安装所需的 Python 库。这些库包括但不限于 `requests`, `beautifulsoup4`, `selenium`, `pandas` `re`。可通过以下命令安装所需库: ```bash pip install requests beautifulsoup4 selenium pandas re ``` 此步骤用于下载浏览器驱动以及相关依赖项[^2]。 #### 处理登录过程中的滑动验证码 如果目标网站涉及滑动验证码,则需要额外处理该部分逻辑。一种常见的方法是通过图像识别技术找到缺口位置,并模拟鼠标拖拽动作完成验证。具体流程如下: 1. **获取背景图片与滑块图片**:利用 Selenium 截取页面上的两张图片。 2. **计算偏移量**:借助 OpenCV 对齐两幅图像,找出滑块应移动的距离。 3. **模拟拖拽行为**:按照计算得到的轨迹逐步释放滑块。 这种方法虽然有效,但并未充分利用机器学习模型的优势[^3]。更进一步的做法可能引入 TensorFlow 构建 CNN 来预测最佳匹配区域。 #### 实现随机评论与回复的功能 针对特定帖子发表评论或者回应他人留言的操作相对简单明了。假设已经定位到输入框元素及其提交按钮后,可执行如下脚本片段: ```python import random comments_pool = ["很棒!", "支持一下~", "继续加油哦!"] random_comment = random.choice(comments_pool) comment_box = browser.find_element_by_css_selector('textarea[name="content"]') comment_box.send_keys(random_comment) submit_button = browser.find_element_by_xpath('//button[@type="submit"]') submit_button.click() ``` 注意这里定义了一个包含若干条正面评价语句的小型池子,从中挑选一条作为最终发布的消息内容[^4]。 ---
评论 62
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿J~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值