由于上次写的图标识别文章不够详细,这次换了一种图标,详细的记录下整个训练过程吧~

首先是目标检测,用的是yolov5,下载地址:
https://github.com/ultralytics/yolov5
还需下载预训练权重文件,下载地址:
链接:https://pan.baidu.com/s/18SQdhqLsQ5ivPH9M7vhCFg?pwd=8f4e 提取码:8f4e
接着使用代码下载100张图片
# -*-coding:utf-8 -*-
"""
# File : captcha.py
# Time :2023/04/23 18:28
# Author :ndy
# version :python 3.6
# Description:
"""
import re
import time
import requests
import vthread
headers = {
"Accept": "*/*",
"Accept-Language": "zh-CN,zh;q=0.9",
"Referer": "https://signin.hworld.com/",
"User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1"
}
@vthread.pool(5)
def run():
url = "https://www.geetest.com/demo/gt/register-icon?t={}".format(int(time.time()*1000))
res = requests.get(url, headers=headers).json()
challenge = res['challenge']
gt = res['gt']
requests.get('https://api.geetest.com/gettype.php?gt={}&callback=geetest_1713230167590'.format(gt), headers=headers)
params = {
"gt": gt,
"challenge": challenge,
"lang": "zh-cn",
"pt": "0",
"client_type": "web_mobile",
"w": "",
"callback": "geetest_1694485799312"
}
requests.get("https://api.geevisit.com/ajax.php", headers=headers, params=params)
url = "https://apiv6.geetest.com/get.php"
params = {
"is_next": "true",
"type": "click",
"gt": gt,
"challenge": challenge,
"lang": "zh-cn",
"https": "true",
"protocol": "https://",
"offline": "false",
"product": "float",
"api_server": "apiv6.geetest.com",
"isPC": "true",
"autoReset": "true",
"width": "100%",
"callback": "geetest_1713230318961"
}
res = requests.get(url, headers=headers, params=params).text
image_path = 'https://static.geetest.com'+re.findall('"pic": "(.*?)"',res)[0]
print(image_path)
image = requests.get(image_path).content
img_name = image_path.split('/')[-1]
with open('./imgs/{}'.format(img_name),'wb') as f:
f.write(image)
if __name__ == '__main__':
for i in range(100):
run()
使用labelimg进行如下标注

在data下创建如下几个文件夹(注意: images内为数据集原始图片,Annotations内为标注的xml文件)
并将images内文件复制到JPEGIamges中(代码中并没有用到这部分,可以不创建JPEGImages文件夹)

根目录下创建make_txt.py 文件,代码如下:
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
根目录下继续创建 voc_label.py 文件,代码如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
classes = ['target','char']
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id))
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
在这里要注意: 这里的 class =[‘target’,‘char’] 代表数据集需要标注的类别,单引号的内容需要根据你的数据集确定,有几类就写几类。
修改之后,依次执行上面两个py文件,执行成功是这样的
(1) labels下生成txt文件(显示数据集的具体标注数据)

(2) ImageSets下生成四个txt文件

(3) data下生成三个txt文件(带有图片的路径)

修改yaml文件
这里的yaml和以往的cfg文件是差不多的,但需要配置一份属于自己数据集的yaml文件。
复制data目录下的coco.yaml,我这里命名为my.yaml
主要修改三个地方:

a. 修改train,val,test的路径为自己刚刚生成的路径
b. nc 里的数字代表数据集的类别数
c. names 里为自己数据集标的所有类名称
修改models模型文件
models下有四个模型,smlx需要训练的时间依次增加,按照需求选择一个文件进行修改即可

这里修改了yolov5s.yaml(需要下载权重文件yolo5s.pt),只需要将nc的类别修改为自己需要的即可

训练train.py
这里需要对train.py文件内的参数进行修改,按照我们的需求需改即可

weights,cfg,data按照自己所需文件的路径修改即可
epochs迭代次数自己决定,我这里仅用100次进行测试
batch-size过高可能会影响电脑运行速度,还是要根据自己电脑硬件条件决定增加还是减少
最终训练完成后,导出onnx文件
修改export.py以下对应参数并运行

然后调用目标检测文件,看看效果还是不错的

最后同样的方法,对图片下载切割后分类,起名字真麻烦,最终类型数是110种。

接着就是要进行分类训练,先使用以下脚本划分训练集、测试集、验证集图片
# -*-coding:utf-8 -*-
"""
# File : 图片划分.py
# Time : 2024/4/2 15:01
# Author : ndy
# version : 2024
# Description:
"""
import os
from shutil import copy
import random
def mkfile(file):
if not os.path.exists(file):
os.makedirs(file)
# 获取data文件夹下所有文件夹名(即需要分类的类名)
file_path = r'分类的图片路径'
save_path = '../classify/datasets/data/'
flower_class = [cla for cla in os.listdir(file_path)]
# 划分比例,训练集 : 测试集 :验证= 7:1:2
split_train = 0.7
split_test = 0.1
split_val = 0.2
# 遍历所有类别的全部图像并按比例分成训练集和验证集
for cla in flower_class:
cla_path = file_path + '/' + cla + '/' # 某一类别的子目录
images = os.listdir(cla_path) # iamges 列表存储了该目录下所有图像的名称
num = len(images)
eval_train = random.sample(images, k=int(num * split_train)) # 从images列表中随机抽取 k 个图像名称
eval_val = random.sample(images, k=int(num * split_val))
for index, image in enumerate(images):
if image in eval_train:
image_path = cla_path + image
new_path = save_path + '/train/' + cla
mkfile(new_path)
copy(image_path, new_path) # 将选中的图像复制到新路径
elif image in eval_val:
image_path = cla_path + image
new_path = save_path + '/val/' + cla
mkfile(new_path)
copy(image_path, new_path) # 将选中的图像复制到新路径
else:
image_path = cla_path + image
new_path = save_path + '/test/' + cla
mkfile(new_path)
copy(image_path, new_path)
print("\r[{}] processing [{}/{}]".format(cla, index + 1, num), end="") # processing bar
print()
print("processing done!")
'''
图片尺寸 50*50
'''
目录格式如下

然后修改train.py文件如下配置

开始训练……

完成后进行测试下

最后结合目标检测实现图标点选功能

分类图片文件已上传至星球(【即将涨价】),可自行进行训练!
同时已上传极验3文字点选源文件,解压即用!



913

被折叠的 条评论
为什么被折叠?



