梯度有关问题

1. 偏导数&方向导数

导数是函数随自变量的变化率, 对于
一元函数:只有一个自变量x,那么函数y=f(x)的导数是,在某一点处沿x轴正方向的变化率
多元函数:多个自变量,是多维向量,那么函数随自变量的变化怎么刻画呢?一个方法,就是衡量函数在给定方向上的变化率,这就是方向导数。方向导数的特例,就是函数随各个自变量(标量)的变化率,即函数的偏导数,也就是函数沿各个坐标轴正方向的方向导数
对于 z = x 2 + y 2 z = x^2+y^2 z=x2+y2形成的曲面,左图:红线表示 f x ( x , y ) f_x(x,y) fx(x,y) x x x轴偏导数,实际上是平行于x轴的平面与曲面相交得到的曲线(图中蓝色实现)在A点处的导数;中图:红线表示方向导数,xy平面不光有平行于坐标轴的直线,还有各种射线,射线决定的曲线在A点处的导数是方向导数。

2. 梯度

对于多元函数,各个方向都有方向导数。那么,函数可能在一些方向上增长的快(方向导数的值比较大),一些方向上增长的慢。所有这些方向中,会有一个增长最快的。梯度就是一个向量,其模为这个增长最快的速率(方向导数值),其方向为这个最快增长方向。

假设 f x ( x , y ) f_x(x,y) fx(x,y) x x x方向偏导数,假设 f y ( x , y ) f_y(x,y) fy(x,y) y y y方向偏导数, u u u为单位向量,可表示为: u = c o s θ i + s i n θ j u=cos\theta i+sin\theta j u=cosθi+sinθj,则 u u u方向的偏导数可用如下公式表示,随着 θ \theta θ的不同,可以求出任意方向的方向导数。
lim ⁡ t → 0 = f ( x 0 + t c o s θ , y 0 + s i n θ ) − f ( x 0 , y 0 ) t \lim_{t \to 0} = \frac{f(x_0+tcos\theta,y_0+sin\theta) - f(x_0,y_0)}{t} t0lim=tf(x0+tcosθ,y0+sinθ)f(x0,y0)
以上公式等价于:
D u f ( x , y ) = f x ( x , y ) c o s θ + f y ( x , y ) s i n θ , 设 A = ( f x ( x , y ) , f y ( x , y ) ) , I = ( c o s θ , s i n θ ) 则 : D u f ( x , y ) = A ⋅ I = ∣ A ∣ ∣ I ∣ c o s α ( α 为 A 和 I 之 间 的 夹 角 ) D_u f(x,y) = f_x(x,y)cos\theta+f_y(x,y)sin\theta,设A = (f_x(x,y),f_y(x,y)),I=(cos\theta,sin\theta) \\ 则:D_u f(x,y) = A \cdot I = |A| |I| cos\alpha (\alpha为A和I之间的夹角) Duf(x,y)=fx(x,y)cosθ+fy(x,y)sinθA=(fx(x,y),fy(x,y))I=(cosθ,sinθ)Duf(x,y)=AI=AIcosα(αAI)
α = 0 \alpha=0 α=0时, D u f ( x , y ) D_u f(x,y) Duf(x,y)取值最大,即 I I I A A A平行时,方向导数最大,此时把A命名为梯度。

3. 为什么要用梯度下降法

https://blog.csdn.net/zhaodedong/article/details/103303688
https://www.cnblogs.com/pinard/p/5970503.html

4. 梯度下降与提督提升的区别

https://blog.csdn.net/qq_42003997/article/details/103682921

5. 参考

偏导数&方向导数
偏导数&方向导数
梯度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值