4 - 09. 笛卡尔树(25)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_26437925/article/details/47611033

4 - 09. 笛卡尔树(25)题目地址

时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
笛卡尔树是一种特殊的二叉树,其结点包含两个关键字K1和K2。首先笛卡尔树是关于K1的二叉搜索树,即结点左子树的所有K1值都比该结点的K1值小,右子树则大。其次所有结点的K2关键字满足优先队列(不妨设为最小堆)的顺序要求,即该结点的K2值比其子树中所有结点的K2值小。给定一棵二叉树,请判断该树是否笛卡尔树。

输入格式说明:

输入首先给出正整数N(<=1000),为树中结点的个数。随后N行,每行给出一个结点的信息,包括:结点的K1值、K2值、左孩子结点编号、右孩子结点编号。设结点从0~(N-1)顺序编号。若某结点不存在孩子结点,则该位置给出-1。

输出格式说明:

输出YES如果该树是一棵笛卡尔树;否则输出NO。

样例输入与输出:

序号 输入 输出
1
6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 21 -1 4
15 22 -1 -1
5 35 -1 -1
YES
2
6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 11 -1 4
15 22 -1 -1
50 35 -1 -1
NO
3
7
8 27 5 1
9 40 -1 -1
10 20 0 3
12 22 -1 4
15 21 6 -1
5 35 -1 -1
13 23 -1 -1
NO
4
6
8 27 5 1
9 40 -1 -1
10 20 0 3
12 21 -1 4
11 22 -1 -1
5 35 -1 -1
NO
5
9
11 5 3 -1
15 3 4 7
5 2 6 0
6 8 -1 -1
9 6 -1 8
10 1 2 1
2 4 -1 -1
20 7 -1 -1
12 9 -1 -1
NO
6
1
1 1 -1 -1
YES

  • 用到了并查集,建立二叉树,二叉树中根遍历,使用队列queue<>判断小堆树
  • 保证40分钟内完成,需要经常敲(我花了将近50分钟敲下面的代码直接敲)
/*
4 - 09. 笛卡尔树(25)
http://www.patest.cn/contests/ds/4-09
*/
#include <iostream>  
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <string>
#include <string.h>
#include <algorithm>
#include <queue>

using namespace std;

#define N 1001

int n;

struct mydata{
    int k1;
    int k2;
    int left;
    int right;
    mydata(int _k1=0, int _k2=0, int _left=-1, int _right=-1) :k1(_k1), k2(_k2), left(_left), right(_right){}
};

typedef struct node{
    int k1, k2;
    struct node* left;
    struct node* right;
    node(int _k1 = 0, int _k2 = 0) :k1(_k1), k2(_k2), left(NULL), right(NULL){}
}BNode;

int father[N];
mydata datas[N];

int find(int x)
{
    if (x == father[x])
        return x;
    return father[x] = find(father[x]);
}

void merg(int x, int y) // 并查集合并
{
    father[find(y)] = find(x);
}

BNode* root;

BNode* createTreeK1(BNode* root, int i)
{
    if (root == NULL)
    {
        root = new node(datas[i].k1,datas[i].k2);
        if (datas[i].left != -1)
        {
            root->left = createTreeK1(root->left, datas[i].left);
        }
        if (datas[i].right != -1)
        {
            root->right = createTreeK1(root->right, datas[i].right);
        }
    }
    return root;
}

// 中根遍历
vector<int> vin;
void inorder(BNode* root)
{
    if (root != NULL)
    {
        inorder(root->left);
        vin.push_back(root->k1);
        inorder(root->right);
    }
}

bool isXiaodui(BNode* root) // 小根堆判断
{
    queue<BNode*> que;
    while (!que.empty())
    {
        que.pop();
    }
    que.push(root);
    while (!que.empty())
    {
        BNode* rt = que.front();
        que.pop();

        int data = rt->k2;
        if (rt->left != NULL)
        {
            if (rt->left->k2 <= data)
                return false;
            que.push(rt->left);
        }
        if (rt->right != NULL)
        {
            if (rt->right->k2 <= data)
                return false;
            que.push(rt->right);
        }
    }
    return true;
}

int main()
{
    //freopen("in", "r", stdin);
    while (scanf("%d", &n) != EOF)
    {
        int i;
        for (i = 0; i < n; i++)
        {
            father[i] = i;
        }
        for (i = 0; i < n; i++)
        {
            scanf("%d%d%d%d", &datas[i].k1, &datas[i].k2, &datas[i].left, &datas[i].right);
            if (datas[i].left != -1)
            {
                if (find(i) != find(datas[i].left))
                    merg(i, datas[i].left);
            }
            if (datas[i].right != -1)
            {
                if (find(i) != find(datas[i].right))
                    merg(i, datas[i].right);
            }
        }

        int rootNum = find(0);
        root = NULL;
        root = createTreeK1(root, rootNum);

        vin.clear();
        inorder(root);
        bool flag1 = true;
        for (i = 1; i < n; i++)
        {
            if (vin[i] <= vin[i - 1]) // 后面的 不大于 前面的就不是了
            {
                flag1 = false;
                break;
            }
        }
        if (flag1)
        {
            bool flag2 = isXiaodui(root);
            if (flag2)
            {
                printf("YES");
            }
            else{
                printf("NO");
            }
        }
        else{
            printf("NO");
        }
        printf("\n");
    }
    return 0;
}
阅读更多

没有更多推荐了,返回首页