计算机图形学入门08:反走样、滤波与卷积

1.抗锯齿(反走样)

        在上一章中,在光栅化三角形的时候出现了明显的锯齿效果。如下图所示是三角形采样过程:

        从图上可知像素点不是纯红色就是纯白色。如果在采样前先进行模糊操作(滤波),如下图所示:

        经过模糊操作后三角形的边缘颜色变化有了一定的过渡,再进行采样时,靠近三角形边缘的地方可以采到一部分过渡色的像素,采样结果不在是要么红色要么白色,就可以达到抗锯齿的目的。

        通过下面两张图来看使用模糊操作后的效果对比。

        再来看另外一组通过滤波处理再采样的效果。

        综上,在进行采样之前先进行模糊操作(滤波),能够达到明显的抗锯齿效果。

2.频域与时域

        上面提到通过先进行滤波操作,再采样来达到抗锯齿的效果,叫做Blurred Aliasing。那么先进行采样,再进行滤波操作能不能同样达到抗锯齿的效果呢,答案是不行的。看下面两张图对比一下,第一张先进行采样再进行滤波操作,第二张是先进行滤波操作再进行采样,可以发现第一种操作是行不通的。

        这是为什么呢?这里需要引入频域(Frequency Domain)时域(Spatial Domain)的概念。

        频域用来表示不同频率下信号的变化,用横轴表示频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。

        时域用来表示不同时间下信号的变化,也可以表示空间上信息。用横轴表示时间,纵轴是当前时间信号的幅度。

2.1周期与频率

        下图是周期性变换的波形函数正弦和余弦函数,它们之间的不同点在于它们的相位不同。

        那么使用余弦与正弦函数有啥好处呢?这里用余弦函数举例子,如下图所示:

        通过余弦函数x前面的系数,会得到不同的余弦波,代表频率不同。f代表频率,频率越大代表余弦波变化越快,周期(T)越短。对于图像信号而言,我们认为两个像素间的颜色变化大则代表频率高,反之则是频率低。

2.2傅里叶变换

2.2.1傅里叶级数展开

        任何周期函数都可以用一系列正弦、余弦函数构成的线性组合以及一个常数项来表示,这种展开方式我们称为傅里叶级数展开。

        如果需要获取一个函数得到向下面这样周期变换

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YanisWu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值