随机森林算法

随机森林这个算法在分类问题上效果十分的好,大多数情况下效果远要比svm,log回归,knn等算法效果好

要学随机森林,首先先简单介绍一下集成学习方法和决策树算法。下文仅对该两种方法做简单介绍(具体学习推荐看统计学习方法的第5章和第8章)。


Bagging和Boosting的概念与区别

该部分主要学习自:http://www.cnblogs.com/liuwu265/p/4690486.html

随机森林属于集成学习(Ensemble Learning)中的bagging算法。在集成学习中,主要分为bagging算法和boosting算法。我们先看看这两种方法的特点和区别。

Bagging(套袋法)

bagging的算法过程如下:

  1. 从原始样本集中使用Bootstraping方法随机抽取n个训练样本,共进行k轮抽取,得到k个训练集。(k个训练集之间相互独立,元素可以有重复)
  2. 对于k个训练集,我们训练k个模型(这k个模型可以根据具体问题而定,比如决策树,knn等)
  3. 对于分类问题:由投票表决产生分类结果;对于回归问题:由k个模型预测结果的均值作为最后预测结果。(所有模型的重要性相同)

Boosting(提升法)

boosting的算法过程如下:

  1. 对于训练集中的每个样本建立权值wi,表示对每个样本的关注度。当某个样本被误分类的概率很高时,需要加大对该样本的权值。
  2. 进行迭代的过程中,每一步迭代都是一个弱分类器。我们需要用某种策略将其组合,作为最终模型。(例如AdaBoost给每个弱分类器一个权值,将其线性组合最为最终分类器。误差越小的弱分类器,权值越大)

Bagging,Boosting的主要区别

  1. 样本选择上:Bagging采用的是Bootstrap随机有放回抽样;而Boosting每一轮的训练集是不变的,改变的只是每一个样本的权重。
  2. 样本权重:Bagging使用的是均匀取样,每个样本权重相等;Boosting根据错误率调整样本权重,错误率越大的样本权重越大。
  3. 预测函数:Bagging所有的预测函数的权重相等;Boosting中误差越小的预测函数其权重越大。
  4. 并行计算:Bagging各个预测函数可以并行生成;Boosting各个预测函数必须按顺序迭代生成。

下面是将决策树与这些算法框架进行结合所得到的新的算法:

1)Bagging + 决策树 = 随机森林

2)AdaBoost + 决策树 = 提升树

3)Gradient Boosting + 决策树 = GBDT


决策树

常用的决策树算法有ID3,C4.5,CART三种。3种算法的模型构建思想都十分类似,只是采用了不同的指标。决策树模型的构建过程大致如下:

ID3,C4.5决策树的生成

输入:训练集D,特征集A,阈值eps 输出:决策树T

  1. 若D中所有样本属于同一类Ck,则T为单节点树,将类Ck作为该结点的类标记,返回T
  2. 若A为空集,即没有特征作为划分依据,则T为单节点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T
  3. 否则,计算A中各特征对D的信息增益(ID3)/信息增益比(C4.5),选择信息增益最大的特征Ag
  4. 若Ag的信息增益(比)小于阈值eps,则置T为单节点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T
  5. 否则,依照特征Ag将D划分为若干非空子集Di,将Di中实例数最大的类作为标记,构建子节点,由结点及其子节点构成树T,返回T
  6. 对第i个子节点,以Di为训练集,以A-{Ag}为特征集,递归地调用1~5,得到子树Ti,返回Ti

CART决策树的生成

这里只简单介绍下CART与ID3和C4.5的区别。

  1. CART树是二叉树,而ID3和C4.5可以是多叉树
  2. CART在生成子树时,是选择一个特征一个取值作为切分点,生成两个子树
  3. 选择特征和切分点的依据是基尼指数,选择基尼指数最小的特征及切分点生成子树

决策树的剪枝

决策树的剪枝主要是为了预防过拟合,过程就不详细介绍了。

主要思路是从叶节点向上回溯,尝试对某个节点进行剪枝,比较剪枝前后的决策树的损失函数值。最后我们通过动态规划(树形dp,acmer应该懂)就可以得到全局最优的剪枝方案。


随机森林(Random Forests)

随机森林是一种重要的基于Bagging的集成学习方法,可以用来做分类、回归等问题。

随机森林的生成方法:

1.从样本集中通过重采样的方式产生n个样本 (随机性1)

2.假设样本特征数目为a,对n个样本选择a中的k个特征,用建立决策树的方式获得最佳分割点(随机性2)

3.重复m次,产生m棵决策树

4.多数投票机制来进行预测

(需要注意的一点是,这里m是指循环的次数,n是指样本的数目,n个样本构成训练的样本集,而m次循环中又会产生m个这样的样本集)

随机森林主要思想是先对原始样本随机选出N 个训练子集用于随机生成N颗决策树,针对每个样本集在构建决策树的选择最优属性进行划分时是随机选择m个属性,而不是像常用的决策树将所有的属性参与选择,再由这些决策树构成一个森林,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类,然后看看哪一类被选择最多,就预测这个样本为那一类。
随机森林算法三个步骤:
(1)为每棵决策树抽样产生训练集
随机森林算法采用Bagging抽样技术从原始训练集中产生N 个训练子集(假设要随机生成N颗决策树),每个训练子集的大小约为原始训练集的三分之二,每次抽样均为随机且放回抽样,这样使得训练子集中的样本存在一定的重复,这样做的目的是为了在训练的时候,每一棵树的输入样本都不是全部的样本,使森林中的决策树不至于产生局部最优解。
(2)构建决策树
为每一个训练子集分别建立一棵决策树,生成N棵决策树从而形成森林,每棵决策树不需要剪枝处理。
由于随机森林在进行节点分裂时,随机地选择某m个属性(一般是随机抽取指定logM +1个随机特征变量, m<<M m << M )参与比较,而不是像决策树将所有的属性都参与属性指标的计算。为了使每棵决策树之间的相关性减少,同时提升每棵决策树的分类精度,从而达到节点分裂的随机性。
(3)森林的形成
随机森林算法最终的输出结果根据随机构建的N棵决策子树将对某测试样本进行分类,将每棵子树的结果汇总,在所得到的结果中哪个类别较多就认为该样本是那个类别。
由于上面两个随机采样(从原始训练集中随机产生N个训练子集用于随机生成N颗决策树和在针对每个样本集构建决策树过程中随机地选择m个属性)的过程保证了随机性,所以不会出现过拟合over-fitting。随机森林中的每一棵数分类的能力都很弱,但是多棵树组合起来就变的NB,因为每棵树都精通某一方面的分类,多棵树组成一个精通不同领域的决策专家。

随机森林在bagging的基础上更进一步:

  1. 样本的随机:从样本集中用Bootstrap随机选取n个样本

  2. 特征的随机:从所有属性中随机选取K个属性,选择最佳分割属性作为节点建立CART决策树(泛化的理解,这里面也可以是其他类型的分类器,比如SVM、Logistics)

  3. 重复以上两步m次,即建立了m棵CART决策树

  4. 这m个CART形成随机森林,通过投票表决结果,决定数据属于哪一类(投票机制有一票否决制、少数服从多数、加权多数)

关于调参:

1.如何选取K,可以考虑有N个属性,取K=根号N

2.最大深度(不超过8层)

3.棵数

4.最小分裂样本树

5.类别比例

随机森林有许多优点:

  • 具有极高的准确率
  • 随机性的引入,使得随机森林不容易过拟合
  • 随机性的引入,使得随机森林有很好的抗噪声能力
  • 能处理很高维度的数据,并且不用做特征选择
  • 既能处理离散型数据,也能处理连续型数据,数据集无需规范化
  • 训练速度快,可以得到变量重要性排序
  • 容易实现并行化

随机森林的缺点:

  • 当随机森林中的决策树个数很多时,训练时需要的空间和时间会较大
  • 随机森林模型还有许多不好解释的地方,有点算个黑盒模型

随机森林的两个重要参数:

1.树节点预选的变量个数:单棵决策树决策树的情况。

2.随机森林中树的个数:随机森林的总体规模。

随机森林模型评价因素

1)每棵树生长越茂盛,组成森林的分类性能越好;

2)每棵树之间的相关性越差,或树之间是独立的,则森林的分类性能越好。

减小特征选择个数m,树的相关性和分类能力也会相应的降低;增大m,两者也会随之增大。所以关键问题是如何选择最优的m(或者是范围),这也是随机森林唯一的一个参数。

参考:
https://blog.csdn.net/qq547276542/article/details/78304454
https://blog.csdn.net/mao_xiao_feng/article/details/52728164
https://www.cnblogs.com/fionacai/p/5894142.html

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值