#每天一篇论文#(212/365)Learning Lightweight Lane Detection CNNs by Self Attention Distillation

Learning Lightweight Lane Detection CNNs by Self Attention Distillation

A.摘要
由于车道注释中固有的非常细微和稀疏的监控信号,因此训练用于车道检测的深层模型具有挑战性。如果不从更丰富的环境中学习,这些模型通常会在具有挑战性的场景中失败,例如严重的遮挡、不明确的车道和糟糕的照明条件。在本文中,我们提出了一种新的知识蒸馏方法,即自我关注蒸馏(SAD),它允许一个模型从自身学习并获得实质性的改进,而不需要任何额外的监督或标签。具体来说,我们观察到,从一个训练到合理水平的模型中提取的注意力图将编码丰富的上下文信息。有价值的上下文信息可以作为“自由”监督的一种形式,通过在网络本身中执行自上而下和分层注意蒸馏来进一步进行表示学习。SAD可以很容易地融入到任何前馈卷积神经网络(CNN)中,并且不会增加推理时间。我们在三个流行的车道检测基准(TuSimple、Culane和BDD100K)上使用轻量级模型(如ENE、Resnet-18和Resnet-34)验证SAD。最轻的模型,ENESTSAD,执行相对或甚至超过现有的算法。值得注意的是,与最先进的SCNN[16]相比,ENET SAD的参数少了20倍,运行速度快了10倍,同时在所有基准测试中仍取得令人信服的性能。

B.贡献
我们的贡献有三个方面:(1)我们提出了一种新的注意力蒸馏方法,即SAD,以增强基于CNN的车道检测模型的表示学习。SAD只在训练阶段使用,在部署过程中不会带来计算成本,我们的工作是首次尝试使用网络的注意力图作为蒸馏目标。(2)我们仔细而系统地研究了SAD的内在机制,考虑在不同层次的模拟路径中进行选择,以及将SAD引入培训过程以提高收益的时间点。(3)我们验证了SAD对提高小车道检测网络性能的有用性。

C.方法

EN语义分割基础上有自监督蒸馏SAD和没有SAD的差异
在这里插入图片描述
在本文作者提出将注意力网络和知识蒸馏结合,在语义分割中通过SAT提高检测速度和精度![在这里插入图片描述](https://img-blog.csdnimg.cn/20190828230237803.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI2NjIzODc5,size_16,color_FFFFFF,t_70)

通过处理特定层的激活输出得到基于激活的注意图,而基于梯度的注意图则通过层的梯度输出得到。在实验中,我们从经验上发现,基于激活的注意蒸馏产生了相当大的性能提升,而基于梯度的注意蒸馏几乎不起作用。
结果
1.注意力网络在ENet中的效果展示
在这里插入图片描述2.准确率对比
在这里插入图片描述

发布了131 篇原创文章 · 获赞 10 · 访问量 7601
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览