三角形面积推导

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_26671365/article/details/52861861

哈哈,好久没学过习了,已知三角形三条变长:a,b,c。推导一下三角形的面积S。

                                                              

                           

                                    S = 1/2c*h

                                       = S=1/2a*c*sinr

              下面就是推导出sinr如何用a,b,c来表示

                               cosr = (a^2+c^2-b^2) / 2a*c

                               因为角r小于180°,故:

                               sinr = √[1 - cos^2(r)]

                                        = √{1-[(a^2+c^2-b^2 )/2a*c]^2 }

                              经运算后得:

                              sin(r) =  [(2a^2*b^2+2a^2*c^2+2b^2*c^2-a^4-b^4-c^4)]/2a*c

                             S = 1/2a*c*sinr

                                = 1/4*√[4a^2*c^2-(a^2+c^2-b^2)^2]   =1/4*√[(2ac+a^2+c^2-b^2)(2ac-a^2-c^2+b^2)]   =1/4*√[(a+c)^2-b^2][b^2-(a-c)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

至此结束


展开阅读全文

没有更多推荐了,返回首页