泛统计理论初探——因变量连续的模型准确率评价指标

本文介绍了在因变量为连续变量时,用于评估机器学习模型预测准确性的三个主要指标:RMSE、MAE和MAPE。详细解释了每个指标的含义、优缺点,并通过实例比较了它们之间的差异,强调在连续变量预测中,MAPE通常是最为客观的评价标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据挖掘-因变量连续的预测评价指标

因变量连续的准确率指标探究
在之前文章的内容中,我们探讨了衡量机器学习准确率的指标,比如auc指标、精确率、召回率等。从因变量的角度来说,那些指标其实是衡量因变量为离散变量的情况下使用的,从预测结果中统计预测正确和错误的数量去构建指标,从而达到预测效果是否准确的判定。但是当因变量为连续变量的时候,预测的结果不太可能刚好和结果相同,比如身高178厘米,通过某个预测模型得出身高177.4厘米,只能说预测的结果和实际结果很接近,但很难做到刚好相等,因此就需要一些新的模型准确率的指标,这些指标是专门针对因变量连续的问题而建立的。下面我们来介绍几个常用的针对因变量连续模型的预测准确率评判指标,分别是RMSE 、MAE、MAPE这三个常见指标。
首先是RMSE这个指标,该指标的公式如下:
在这里插入图片描述
其实RMSE的中文含义就是均方根误差,Root Mean Squard Error,简称RMSE。它的本质是通过衡量预测值和因变量真实值的差值的平方和,然后对平方和求平均值再开根号,得到RMSE的值,RMSE的值容易受到异常值的影响,如果有些预测值结果偏大,通过平方和的放大后会加大RMSE的值,最终影响了结果,所以该指标不是最理想的因变量连续模型的预测指标。
其次是MAE这个指标,该指标的公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值