Leo的博客

一个科研小子的奋斗经历

机器学习系列(7)_机器学习路线图(附资料)

转载自: 机器学习系列(7)_机器学习路线图(附资料) - 寒小阳 - 博客频道 - CSDN.NET http://blog.csdn.net/han_xiaoyang/article/details/50759472 1. 引言 也许你和这个叫『机器学习』的家伙一点...

2016-03-14 15:15:49

阅读数 910

评论数 0

机器学习实战笔记(Python实现)-02-k近邻算法(kNN)

k近邻算法(kNN)         本博客来源于CSDN:http://blog.csdn.net/niuwei22007/article/details/49703719               本博客源代码下载地址:CSDN免费下载、GitHub下载地址 均带有详细注释和测试...

2016-03-30 11:04:37

阅读数 810

评论数 0

机器学习实战笔记(Python实现)-01-机器学习实战

今天发布一篇图片博客,看一下效果如何,如果效果,以后的博客尽量发图片上来。

2016-03-30 11:03:30

阅读数 536

评论数 0

卷积算子计算方法(卷积运算)

转载自:http://blog.csdn.net/niuwei22007/article/details/48969709 原链接:http://blog.csdn.net/niuwei22007/article/details/48969709可以查看更多文章 卷积操...

2016-03-30 10:46:29

阅读数 5558

评论数 0

深度学习(DL)与卷积神经网络(CNN)学习随笔-05-基于Python的LeNet之CNN

本文原链接可以查看更多文章        博文01介绍了CNN的基本结构。博文02、03、04依次介绍了卷积操作、LR模型的建立及实现,MLP模型及实现。这些都是作为实现LeNet的铺垫。因为LeNet的实现就是由它们组成的。        今天我们就来讨论一下LeNet的模型建立及实现。...

2016-03-30 10:45:22

阅读数 565

评论数 0

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-04-基于Python的LeNet之MLP

原文地址可以查看更多信息   本文主要参考于:Multilayer Perceptron    python源代码(github下载  CSDN免费下载)   本文主要介绍含有单隐层的MLP的建模及实现。建议在阅读本博文之前,先看一下LR的实现。因为LR是简化版的MLP。LR不含有单...

2016-03-30 10:44:34

阅读数 1401

评论数 0

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-03-基于Python的LeNet之LR

原地址可以查看更多信息 本文主要参考于:Classifying MNIST digits using Logistic Regression  python源代码(GitHub下载  CSDN免费下载)   0阶张量叫标量(scarlar);1阶张量叫向量(vector);2阶张量叫...

2016-03-30 10:43:32

阅读数 1080

评论数 0

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-02-基于Python的卷积运算

原文地址可以查看更多信息:http://blog.csdn.net/niuwei22007/article/details/48025939         源代码分析:(注意,如果直接保存以下代码,一定要另存为UTF8格式,否则报错)个人理解,欢迎批评指正。 代码中会用到...

2016-03-30 10:42:28

阅读数 1439

评论数 0

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-01-CNN基础知识点

转载自:http://blog.csdn.net/niuwei22007/article/details/47399913 《CNN基础知识点》From:Convolutional Neural Networks (LeNet) 原文链接可以查看更多信息:http://blog.c...

2016-03-30 10:41:38

阅读数 1446

评论数 0

我对卷积的理解

转载自:http://mengqi92.github.io/2015/10/06/convolution/ 在学习机器学习和图像处理的过程中,经常会遇到卷积这个概念。我每次遇到这个概念都有点似懂非懂的样子。有时候清楚它的直观解释,但又搞不清公式中是如何体现的。究其原因,还是我没有完全搞懂...

2016-03-30 10:35:55

阅读数 8205

评论数 0

三种权重的初始化方法

总结了三种权重的初始化方法,前两种比较常见,后一种是最新的。 1. Gaussian Weights are randomly drawn from Gaussian distributions with fixed mean (e.g., 0) and fixed...

2016-03-28 11:19:45

阅读数 18130

评论数 0

caffe卷积层代码阅读笔记

转载自:http://blog.csdn.net/tangwei2014/article/details/47730797 卷积的实现思想: 通过im2col将image转为一个matrix,将卷积操作转为矩阵乘法运算通过调用GEMM完成运算操作下面两个图是我在知乎中发现的,“盗”...

2016-03-28 11:17:56

阅读数 1249

评论数 0

论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection

转载自:http://blog.csdn.net/tangwei2014/article/details/50915317 这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO。 虽...

2016-03-28 11:08:05

阅读数 1098

评论数 0

神经网络weight参数怎么初始化

转载自:http://blog.csdn.net/xbinworld/article/details/50603552 神经网络,或者深度学习算法的参数初始化是一个很重要的方面,传统的初始化方法从高斯分布中随机初始化参数。甚至直接全初始化为1或者0。这样的方法暴力直接,但...

2016-03-28 11:02:00

阅读数 3061

评论数 0

今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)

这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典。也是deep learning的基石之一。还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书...

2016-03-28 10:54:31

阅读数 619

评论数 0

今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。

今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络。 话说上一次写这个笔记是13年的事情了···那时候忙着实习,找工作,毕业什么的就没写下去了,现在工作了...

2016-03-28 10:53:43

阅读数 389

评论数 0

今天开始学Pattern Recognition and Machine Learning (PRML),章节1.6,Information Theory信息论简介

今天开始学Pattern Recognition and Machine Learning (PRML),章节1.6,Information Theory信息论简介 前面有朋友说写的东西太理论了,我想说我并不是在和很多其他博客一样做topic的入门介绍,配合很多示意图之类;而是在记录PRML...

2016-03-28 10:52:52

阅读数 441

评论数 0

今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节1.2,Probability Theory (下)

今天开始学Pattern Recognition and Machine Learning (PRML),章节1.2,Probability Theory (下) 今天把1.2写完,这一节讲了很多重要的基础内容。 1.2.3 贝叶斯概率 这一节的上半部分,我们结合一个盒子-水...

2016-03-28 10:52:01

阅读数 539

评论数 0

今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上)

Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上) 这一节是浓缩了整本书关于概率论的精华,突出一个不确定性(uncertainty)的理解。我看的比较慢,是想要细扣一下,而且写blog码字...

2016-03-28 10:51:03

阅读数 1229

评论数 0

今天开始学模式识别与机器学习Pattern Recognition and Machine Learning 书,章节1.1,多项式曲线拟合(Polynomial Curve Fitting)

转载自:http://blog.csdn.net/xbinworld/article/details/8834155 Pattern Recognition and Machine Learning (PRML)书学习,章节1.1,介绍与多项式曲线拟合(Polynomial Curve ...

2016-03-28 10:49:56

阅读数 1702

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭