11:回文素数
总时间限制: 5000ms 内存限制: 65536kB
描述
一个数如果从左往右读和从右往左读数字是相同的,则称这个数是回文数,如121,1221,15651都是回文数。给定位数n,找出所有既是回文数又是素数的n位十进制数。(注:不考虑超过整型数范围的情况)。
输入
位数n,其中1<=n<=9。
输出
第一行输出满足条件的素数个数。
第二行按照从小到大的顺序输出所有满足条件的素数,两个数之间用一个空格区分。
样例输入
1
样例输出
4
2 3 5 7
分析:
(注意,当是ll类型的时候想要用pow等方法,需要重新自己写方法)
对n为偶数的情况,直接特殊处理。
对n为奇数的情况,可以先特殊处理n==1的情况,然后对n==3、5、7、9的情况按如下方法处理:
先想办法够造出一个n位的回文数temp然后判断temp是否是质数。
够造n位的回文数temp的方法:用所有的(n+1)/2位的数分别够造n位的回文数。例如:可以用123够造一个5位的回文数12321.
(注意:123可以够造出12321和32123两个回文数,但是我们只需要使用123够造12321,在接下来的循环过程中会使用321够造32123这个回文数。)
#include<iostream>
#include<stdio.h>
#include<math.h>
using namespace std;
//http://noi.openjudge.cn/ch0113/11/
//这个题感觉还挺复杂的,关键是构造回文数很难想到
typedef long long ll;
int n;
ll a,b,res[50000],cnt;
ll mypow(int x){//计算并返回10^x
ll ans=1;
for(int i=1;i<=x;i++){
ans=ans*10;
}
return ans;
}
ll hw(ll x){//例如:n等于123,返回12321这样一个回文数
ll ans=x;
x=x/10;
while(x>0){
ans=ans*10+x%10;
x/=10;
}
return ans;
}
bool is_prime(ll x){
for(ll i=2;i*i<=x;i++){
if(x%i==0){
return false;
}
}
return true;
}
int main(){
while(cin>>n){
if(n==1)printf("4\n2 3 5 7\n");
else if(n==2)printf("1\n11\n");
else if(n%2==0)printf("0\n");
else{
cnt=0;
n=(n+1)/2;
a=mypow(n-1);//构造[a,b)区间内的回文数
b=mypow(n);
for(ll i=a;i<b;i++){
ll t=hw(i);
if(is_prime(t)){
res[cnt++]=t;
}
}
cout<<cnt<<endl;
for(int i=0;i<cnt;i++){
cout<<res[i]<<" ";
}
cout<<endl;
}
}
}