string longestPalindrome(string s) {
if (s.empty()) return "";
if (s.size() == 1) return s;
int min_start = 0, max_len = 1;
for (int i = 0; i < s.size();) {
if (s.size() - i <= max_len / 2) break;
int j = i, k = i;
while (k < s.size()-1 && s[k+1] == s[k]) ++k; // 当遇到重复字母情况时,i可以跳跃,一个不错的剪枝,却也不易想到
i = k+1;
while (k < s.size()-1 && j > 0 && s[k + 1] == s[j - 1]) { ++k; --j; } // Expand.
int new_len = k - j + 1;
if (new_len > max_len) { min_start = j; max_len = new_len; }
}
return s.substr(min_start, max_len);
}
本质上是一个二重循环,O(n^2)的复杂度,似乎还存在O(n)的算法,这里退而求其次,在常规的O(n^2)的算法上加入剪枝,使在多数情况下的时间接近O(n)
当复杂度层面的改进过于困难时,多想想剪枝也是个不错的选择。