0. 事出有因
身为卑微苦逼工科学生, 这个学期要同时学习多元微积分, 概率统计和物理的热力学部分. 然后就遇上了三者的联动: 物理课上出现了身为概率密度函数的Maxwell速率分布函数, 顺便再算一手速率的数学期望以及其平方的数学期望(本质上不是要平方的数学期望, 而是要求所谓的方均根速率, 也就是 v 2 ˉ \displaystyle\sqrt{\bar{v^2}} v2ˉ). 于是乎, 就要算广义积分, 还是没有原函数的那种. 然而, 也因为是卑微的工科学生, 老师并不讲这些东西计算的过程, 而是直接给个公式, 背就完事了. 但是, 我还是想要知其所以然~~, 况且这个不是很困难对吧~~, 于是就有了这篇文章.
0.5 如果你只是想要抄个结果的话
- Gauss积分及其变形
- ∫ − ∞ + ∞ e − α x 2 d x = 2 ∫ 0 + ∞ e − α x 2 d x = π α \displaystyle\int_{-\infty}^{+\infty}e^{-\alpha x^2}\mathop{}\!\mathrm{d}x=2\int_{0}^{+\infty}e^{-\alpha x^2}\mathop{}\!\mathrm{d}x=\sqrt{\frac{\pi}{\alpha}} ∫−∞+∞e−αx2dx=2∫0+∞e−αx2dx=απ
- ∫ − ∞ + ∞ e − a x 2 + b x + c d x = π a e b 2 4 a + c \displaystyle\int_{-\infty}^{+\infty}e^{-ax^2+bx+c}\mathop{}\!\mathrm{d}x=\sqrt{\frac{\pi}{a}}e^{\frac{b^2}{4a}+c} ∫−∞+∞e−ax2+bx+cdx=aπe4ab2+c
- ∫ 0 + ∞ x 2 n + 1 e − α x 2 d x = n ! 2 α n + 1 \displaystyle\int_{0}^{+\infty}x^{2n+1}e^{-\alpha x^2}\mathop{}\!\mathrm{d}x=\frac{n!}{2\alpha^{n+1}} ∫0+∞x2n+1e−αx2dx=2αn+1n!
- ∫ 0 + ∞ x 2 n e − α x 2 d x = ( 2 n − 1 ) ! ! 2 n + 1 α n π α \displaystyle\int_{0}^{+\infty}x^{2n}e^{-\alpha x^2}\mathop{}\!\mathrm{d}x=\frac{(2n-1)!!}{2^{n+1}\alpha^n}\sqrt{\frac{\pi}{\alpha}} ∫0+∞x2ne−αx2dx=2n+1αn(2n−1)!!απ
- Maxwell-Boltzmann分布的常见统计量
- 平均速率 v ˉ = 2 2 k B T π m \displaystyle\bar{v}=2\sqrt{\frac{2k_BT}{\pi m}} vˉ=2πm2kBT
- 方均根速率 v 2 ˉ = 3 k B T m \displaystyle\sqrt{\bar{v^2}}=\sqrt{\frac{3k_BT}{m}} v2ˉ=m3kBT
- 最概然速率 v p = 2 k B T m \displaystyle v_p=\sqrt{\frac{2k_BT}{m}} vp=m2kBT
1. 简单介绍一下
1.1 Gauss积分
我们先来讲讲Gauss(高斯)积分. 狭义的Gauss积分就是Gauss函数 e − x 2 e^{-x^2} e−x2在整个实数域上的广义积分(正态分布内味有了), 即:
∫ − ∞ + ∞ e − x 2 d x \displaystyle\int_{-\infty}^{+\infty}e^{-x^2}\mathop{}\!\mathrm{d}x ∫−∞+∞e−x2dx
顺便一提, 它的结果是 π \sqrt{\pi} π. 而比较广义的Gauss积分则是形如这样的广义积分:
∫ − ∞ + ∞ x n e − a x 2 + b x + c d x \displaystyle\int_{-\infty}^{+\infty}x^ne^{-ax^2+bx+c}\mathop{}\!\mathrm{d}x ∫−∞+∞xne−ax2+bx+cdx
一般而言, n n n为非负整数, a a a是正数, b b b和 c c c都是实数. 不过, 要是懂得多一点点, 就会在其中看到更多的可能, 包括但不限于多维和泛函, 因为我是真的不会了, 所以不在此赘述.
1.2 Maxwell-Blotzmann分布
然后是Maxwell(麦克斯韦)速率分布函数, 这个分布又称Maxwell-Boltzmann(玻尔兹曼)分布. 一言以蔽之, 它就是一个描述一定温度下微观粒子运动速度的概率分布函数. 它是个关于速率 v v v的概率密度函数(Probability Distribution Function), 也就是说, 这个函数 f ( v ) f(v) f(v)满足:
∫ − ∞ + ∞ f ( v ) d v = 1 \displaystyle\int_{-\infty}^{+\infty}f(v)\mathop{}\!\mathrm{d}v=1 ∫−∞+∞f(v)dv=1
而分布函数本体是长这个样子的:
f ( v ) = { 2 π ( m k B T ) 3 v 2 e − m v 2 2 k B T , v > 0 0 , v ≤ 0 \displaystyle f(v)=\begin{cases} \displaystyle\sqrt{\frac{2}{\pi}\left(\frac{m}{k_BT}\right)^3}v^2e^{-\frac{mv^2}{2k_BT}},\,&v>0\\ 0,\,&v\leq0\\\end{cases} f(v)=⎩⎪⎨⎪⎧π2(kBTm)3v2e−2kBTmv2,0,v>0v≤0
其中, m m m是每个分子的质量, T T T是绝对温度, v v v当然就是速率, 所以在 v < 0 v<0 v<0的时候概率密度都是 0 0 0, 而 k B k_B kB是Boltzmann常数, 或者, 就是 R N A \displaystyle\frac{R}{N_A} NAR, 分子上是我们熟知的理想气体常数, 分母上则是Avogadro(阿伏伽德罗)常数.
顺便一提, 在这个函数中, v = 0 v=0 v=0的情况被分在了下面, 就是直接是 0 0 0. 不过, 这完全不重要, 因为把 0 0 0代进上面的式子里面, 计算得到也是 0 0 0. 并且, 速率为 0 0 0的气体分子在非绝对零度的时候是不存在的.
如果我们需要计算平均速率的话, 我们就需要计算 E ( v ) E(v) E(v), 也就是 v v v的数学期望. 计算公式如下:
E ( v ) = ∫ − ∞ + ∞ f ( v ) v d v = ∫ 0 + ∞ 2 π ( m k B T ) 3 v 3 e − m v 2 2 k B T d v \begin{aligned}E(v)&=\int_{-\infty}^{+\infty}f(v)v\mathop{}\!\mathrm{d}v\\ &=\int_0^{+\infty}\sqrt{\frac{2}{\pi}\left(\frac{m}{k_BT}\right)^3}v^3e^{-\frac{mv^2}{2k_BT}}\mathop{}\!\mathrm{d}v\end{aligned} E(v)=∫−∞+∞f(v)vdv=∫0+∞π2(k

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



