数学期望整理

WTSRUVF期望整理:

明确:

如果一件事情成功的概率为p  则期望成功的次数为1/p

解释:

符合超几何分布

设为第k次成功 ,则前k-1次都不成功 , 则概率为

P=(1-p)^(k-1) *p

k/次数

1

2

3

`````

`````

k

P/概率

p

(1-p)*p

(1-p)^2 *p

`````

`````

(1-p)^(k-1)*p

 

则期望次数EX= 1*p + 2*(1-p)*p + 3*(1-p)^2 *p+````+k*(1-p)^(k-1)*p

化简后  E X=  1/p

 

成功的概率相等,花费的价值不相等

LightOJ 1027

 题意:n个门前选择一扇门出去, 然后如果第i扇门的 Xi值是正的话,你会花费Xi时间后出去 , 如果Xi是负数的话你会花费-Xi时间后回到老地方,并且忘记了刚才的选择, 选择一扇门的概率是等概的。求出去期望的时间

解析:设正值有N1个 负值N2个  一共有N个  则成功的概率(即能走出去的概率)为N1/N (只要有一次为正 就能走出去) 则期望的次数为N/N1

但时间时间不相等  所以不能直接用时间*次数  所以时间也要求期望(即平均值) 再相乘  


import java.math.BigDecimal;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.Vector;

public class Main {
	public static int gcd(int a,int b)
	{
		return b == 0?a:gcd(b,a%b);
	}
	public static void main(String[] args) {
		final int maxn = 10010;
		Scanner cin = new Scanner(System.in);
		int T = cin.nextInt();
		int cnt = 0;
		while(T-- != 0)
		{
			int cnt1 = 0, cnt2 = 0;
			int n = cin.nextInt();
			int sum = 0;
			for(int i=0; i<n; i++)
			{
				int temp = cin.nextInt();
				if(temp > 0) cnt1++;
				else cnt2++;
				sum += Math.abs(temp);
			}
			System.out.printf("Case %d: ",++cnt);
	//		if(cnt1 == n) System.out.println("1/1");
			if(cnt2 == n) System.out.println("inf");
			else
			{
				System.out.println(sum/gcd(sum,cnt1) + "/" + cnt1/gcd(sum,cnt1));
				
			}
			
		}

	}
}


成功的概率不相等,花费的价值相等

例:FZU-2278 YYS

有放回的抽取n张牌,每张在每次抽到的概率为1/n , 每次花费价值为W ,求在得到所有的牌时 期望的花费

在抽第k张牌时 抽到的不为前k-1张的概率为(n-(k-1))/n  即为第k张牌成功的概率 如下表

k/第几张牌

1

2

3

``````

``````

n

P

1

(n-1)/n

(n-2)/n

``````

``````

1/n

则第k张牌成功需要的次数为概率的倒数

如下表

k/第几张牌

1

2

3

······

······

n

次数

1

n/(n-1)

n/(n-2)

·····

······

n

则总次数为它们的和

Sum = 1 + n/(n-1) + n/(n-2) + ``````+ n = n *调和级数

则需要花费的价值为 Value = Sum * W

阅读更多
想对作者说点什么? 我来说一句

数学期望定义和性质.ppt

2010年05月13日 706KB 下载

没有更多推荐了,返回首页

不良信息举报

数学期望整理

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭