27_ElasticSearch用function_score自定义相关度分数算法

27_ElasticSearch用function_score自定义相关度分数算法

更多干货

需求

  • 1、在field: tile 和 content 中查找 java spark 的doc
  • 2、要求follower_num越多的 doc 分数越高。(看帖子的人越多,那么帖子的分数就越高)

function_score函数

  • 我们可以做到自定义一个function_score函数
  • 自己将某个field的值,跟es内置算出来的分数进行运算
  • 然后由自己指定的field来进行分数的增强

例子

给所有的帖子数据增加follower数量

POST /forum/article/_bulk
{ "update": { "_id": "1"} }
{ "doc" : {"follower_num" : 5} }
{ "update": { "_id": "2"} }
{ "doc" : {"follower_num" : 10} }
{ "update": { "_id": "3"} }
{ "doc" : {"follower_num" : 25} }
{ "update": { "_id": "4"} }
{ "doc" : {"follower_num" : 3} }
{ "update": { "_id": "5"} }
{ "doc" : {"follower_num" : 60} }
  • 将对帖子搜索得到的分数,跟follower_num进行运算,由follower_num在一定程度上增强帖子的分数
  • 看帖子的人越多,那么帖子的分数就越高
GET /forum/article/_search
{
  "query": {
    "function_score": {
      "query": {
        "multi_match": {
          "query": "java spark",
          "fields": ["tile", "content"]
        }
      },
      "field_value_factor": {
        "field": "follower_num",
        "modifier": "log1p",
        "factor": 0.5
      },
      "boost_mode": "sum",
      "max_boost": 2
    }
  }
}
  • field_value_factor中如果只有field,那么会将每个doc的分数乘以follower_num,如果有的doc follower是0,那么分数就会变为0,效果很不好。
  • 因此一般会加个log1p函数,公式会变为,new_score = old_score * log(1 + number_of_votes),这样出来的分数会比较合理
  • 再加个factor,可以进一步影响分数,new_score = old_score * log(1 + factor * number_of_votes)
  • boost_mode,可以决定分数与指定字段的值如何计算,multiply,sum,min,max,replace
  • max_boost,限制计算出来的分数不要超过max_boost指定的值

相关文章


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值