torch.nn.functional.pad函数介绍

torch.nn.functional.pad 是 PyTorch 中用于对张量进行边界填充的函数,支持多种填充模式,可以在多种场景(如卷积神经网络的输入预处理)中使用。


函数签名

torch.nn.functional.pad(
    input: Tensor,
    pad: Tuple[int, ...],
    mode: str = 'constant',
    value: float = 0
) -> Tensor

参数说明

  1. input (Tensor):

    • 输入的张量。
    • 可以是任意维度的张量。
  2. pad (tuple):

    • 指定每个维度填充的大小。
    • 该元组的长度必须是偶数,表示从最后一个维度开始,依次为每个维度添加填充,按照 (dim_last_before_last, dim_last, dim_second_to_last_before_last, dim_second_to_last, ...)的顺序排列。
    • 每个维度需要两个数字:第一个表示左侧填充,第二个表示右侧填充。
    • 示例: 对 3D 张量 (D, H, W)
      • pad=(1, 2, 3, 4)
        • 对 W 维度左填充 1,右填充 2。
        • 对 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值