蛋白质大语言模型ESM介绍

ESM(Evolutionary Scale Modeling)是 Meta AI Research 团队开发的一系列用于蛋白质的预训练语言模型。这些模型在蛋白质结构预测、功能预测和蛋白质设计等领域展现出了强大的能力。以下是对 ESM 的详细介绍:

核心特点

  • 大规模预训练:基于大规模蛋白质序列数据进行无监督学习,学习到蛋白质序列中的进化信息和潜在模式。
  • Transformer 架构:采用 Transformer 架构,能够捕捉蛋白质序列中的长程依赖关系,从而更好地理解蛋白质的结构和功能。
  • 多任务应用:可以用于多种蛋白质相关任务,如结构预测、功能预测、突变效应预测和蛋白质设计等。

主要模型版本

  1. ESM - 1 和 ESM - 1b:这是 ESM 系列的早期模型,为后续模型的发展奠定了基础。在蛋白质结构和功能预测方面取得了一定的成果。
  2. ESM - 2:是 SOTA 通用蛋白质语言模型,可直接从单个序列预测蛋白质的结构、功能和其他属性。与之前的模型相比,ESM - 2 在多个结构预测任务中表现更优,超过了所有测试的单序列蛋白质语言模型。
  3. ESM - 1v:专门用于预测蛋白质变体效应的语言模型,能够进行零样本预测序列变异对蛋白质功能的影响。
  4. ESM - MSA - 1b:一种 MSA(多序列比对)Transformer 语言模型,可用于从 MSA 中提取嵌入信息,实现了最先进的结构推理。
  5. ESM - IF1
### ESM蛋白质语言模型生物信息学中的实现与使用 #### 实现细节 ESM(Evolutionary Scale Modeling)蛋白质语言模型通过处理大量未标注的蛋白质序列数据来学习生物学结构和功能。该模型利用无监督学习技术,在超过2.5亿条蛋白质序列上进行了训练,从而能够捕捉到复杂的模式并预测未知的功能特性[^1]。 对于具体的实现方面,ESM-1b是一个基于Transformer架构构建的大规模预训练模型实例。它采用了自回归的方式来进行氨基酸残基级别的建模,并引入了多尺度注意力机制以更好地理解不同长度范围内的相互作用关系。此外,为了提高效率和支持更广泛的下游任务需求,还开发了一系列轻量化版本供研究人员选择适用。 ```python from esm import pretrained import torch # 加载预训练好的esm1b_t33_650M_UR50S模型 model, alphabet = pretrained.load_model_and_alphabet('esm1b_t33_650M_UR50S') batch_converter = alphabet.get_batch_converter() # 准备输入数据 data = [("protein1", "MKQHKAMIVALIVALEGEV"), ("protein2", "KALTARQQEVFDLIRDHISQT")] batch_labels, batch_strs, batch_tokens = batch_converter(data) # 进行推理计算 with torch.no_grad(): results = model(batch_tokens, repr_layers=[33], return_contacts=True) ``` 这段Python代码展示了如何加载预先训练完成的一个具体变体`esm1b_t33_650M_UR50S`以及怎样准备一批待分析的数据样本;最后执行了一次前向传播操作得到表示层特征和其他有用的信息输出。 #### 使用场景 当涉及到实际应用场景时,ESM可以应用于多个领域: - **蛋白质分类**:通过对已知类别标签的小型数据集微调大型预训练模型,可以在新发现但尚未充分表征过的蛋白质之间建立联系。 - **突变效应预测**:借助于强大的上下文感知能力,即使是在非常规位置发生的单核苷酸变异也有可能被准确评估其潜在影响程度。 - **远程同源检测**:由于具备跨越远距离识别相似性的潜力,因此非常适合用来寻找那些表面上看起来差异很大但实际上可能具有共同祖先起源的关系对。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值