Ubuntu16.04+ROS+ORBSLAM3编译运行 计算机环境说明:系统: Ubuntu16.04 + ROS kineticOpoenCV: ROS自带的3.3.1代码编译:1.官方代码下载git clone https://github.com/UZ-SLAMLab/ORB_SLAM3.git ORB_SLAM32.修改CmakeList.txt文件由于我电脑上安装的Eigen版本与代码要求的不符,所以需要进行如下改动:将ORBSLAM3主目录下和/ORBSLAM3/Thirdparty/g2o下的CmakeList.txt文件做如
Ubuntu18.04配置BADSlam 相关软硬件版本说明系统:Ubuntu18.04显卡:RTX2060显卡驱动:440.95.01Cuda版本:Cuda10.1Cudnn: 7.6.5系统安装了ROS: MelodicBADSLAM具有预编译和源码编译两个版本,本文选择后者,下载源码进行编译。相关资源我已经上传到网盘中,可供下载:链接:https://rec.ustc.edu.cn/share/9c98adf0-5ac3-11eb-afd7-632b29b78667密码:af711、克隆源码git clone htt
三维目标检测中IoU的计算(C++实现) 一、三维目标表示世界坐标系下的三维目标有9个自由度,分别为三个自由度的平移量(中心点坐标){x,y,z},三自由度的旋转{roll, pitch, yaw},三自由度的尺寸{length,width,height}。通常假设物体都是水平放置,所以roll = 0,pitch = 0;因此一个立方体可以表示为{x,y,z,0,0,yaw,len,wid,hei}。其中len、wid、hei分别是立方体长宽高的一半。三、代码实现bool bInBox(const vector<cv::Point2f
OpenCV中 cv::Mat数据类型汇总以及多维矩阵元素访问(C++) cv::Mat在SLAM经常用于存储图像数据以及相机位姿,其兼容的数据类型多种多样,使用此数据结构前要明确搞清楚当前矩阵元素是什么类型的,不然后面进行逐个元素访问或者计算时会经常出错。1、数据类型查看方法:cv::Mat T;std::cout<<T.type()<<endl;2、type()返回值与数据类型对应关系:type()返回值C1CV_8U2CV_8S...
C++ warning: Clock skew detected. Your build may be incomplete 问题陈述:本人电脑上安装的是Win10+Ubuntu16.04双系统,从Win10切换到Ubuntu时,电脑没有联网的话系统时间时间可能会发生错乱,此时若对C++工程进行编译的话,工程里的部分文件时间将全部被改为当前错误的系统时间。当下次进入Ubuntu时若系统联网的话,系统时间将会自动校准为当前真实时间,而C++工程的文件时间还是错误的,此时若去编译这个工程,将会出现标题所述警告,导致系统无法正确编译。问题原因:系统时间与C++工程的文件时间不一致。解决办法:更新所有文件的时间后重新编译。cd
Ubuntu下为Pycharm添加系统快捷启动图标 1、首先,在桌面创建一个文件:pycharm.desktop2、编辑这个文件,添加以下内容:[Desktop Entry]Version=1.0Type=ApplicationName=PycharmIcon=/home/shiqi/Software/pycharm-2020.2.2/bin/pycharm.pngExec=/home/shiqi/Software/pycharm-2020.2.2/bin/bin/pycharm.shMimeType=application/x-
Ubuntu16.04配置实例分割网络SOLO&SOLOv2 相关依赖版本说明系统:Ubuntu16.04显卡:RTX2060显卡驱动:440.82Cuda:10.1, Cudnn7.6.5Python3.7gcc5.4.0,g++5.4.0pytorch1.4.0,torchvision0.5.0一、安装python环境conda create -n solo python=3.7 -yconda activate soloconda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=
Ubuntu16.04配置实例分割网络BlendMask 相关依赖版本说明显卡:RTX2060显卡驱动:440.82Cuda:10.0, Cudnn7.6.5Python3.7gcc5.4.0,g++5.4.0pytorch1.4.0,torchvision0.5.0一、安装python环境conda create -n BlendMask python=3.7conda activate BlendMaskpip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch==1.4.0
在极链AI云平台上用COCO数据集训练Deep Snake网络 Deep Snake本机环境配置:1、系统环境一览:显卡:RTX2060驱动:NVIDIA-Linux-x86_64-440.82CUDA:10.0Cudnn:7.6.5Python:3.7.9Torch: 1.2.0torchvision:0.4.0其他的按照Github官网安装就好关于DeepSnake训练coco数据集的方法,参照博客:Real-Time实例分割DeepSnake使用篇2、输入下列命令复制当前虚拟环境:cd /snakeconda activate snake
Error in `./rgbd_tum‘: double free or corruption (!prev): 0x00007f3b385d0a40错误解决 C++程序运行过程中遇到了下列错误:Error in `./rgbd_tum’: double free or corruption (!prev): 0x00007f3b385d0a40,且错误出现的时间点随机,如下图所示:上网查了资料,有人说是内存访问越界了,但是仔细检查程序之后没有此情况,经过反复思考,才发现是线程间共享资源访问冲突了,下面介绍一下问题以及解决办法:程序的结构如下:MapObject.h:public: std::vector<VoxelNode *> GetA
Ubuntu16.04配置Mask R-CNN环境(不安装Anaconda) 概述:由于在Ubuntu16.04中ROS和Ananconda冲突,不能同时安装,所以这里尝试直接在Ubuntu16.04上配置Mask RCNN环境。升级Python版本到3.7Ubuntu16.04自带的是Python3.5.2,新版本的numpy等一些库要求python版本要大于3.6,所以这里将python3.5.2升级到python3.7增加ppa仓库: sudo add-apt-repository ppa:jonathonf/python-3.7...
Ubuntu16.04安装 ORB_SLAM2_PointCloud 源码下载:https://gitee.com/cenruping/ORB_SLAM2_PointCloud编译Sopus:cd ORB_SLAM2_PointCloud/Thirdpartymkdir buildcd buildcmake ..make -j安装PCL:sudo add-apt-repository ppa:v-launchpad-jochen-sprickerhof-de/pcl sudo apt-get update sudo apt-get install
DynaSLAM环境配置过程详解(Ubuntu16.04+python2.7+Tensorflow-gpu1.4.0+Keras2.0.8) 电脑硬件配置及软件安装版本说明:CPU: i7-10750H显卡:RTX2060各软件安装版本:Nvidia-Driver Version: 440.82CUDA Version: 8.0Cudnn Version:6.0安装显卡驱动+CUDA8.0+Cudnn6.0:这些基于Ubuntu的深度学习环境配置我在另一篇博客中有详细说明,在这里不在赘述,参考如下资料即可。另一篇博客地址:Ubuntu16.04配置Mask-RCNN环境CUDA历史版本下载:https://deve
Ubuntu18.04配置DynaSLAM 安装Tensorflow1、安装keraspip install keras==2.2.53.安装Tensorflowpip install tensorflow-gpu==1.14.0 安装完之后输入以下代码,测试以下:pythonimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'import tensorflow as tfhello = tf.constant('Hello, TensorFlow!')sess = tf.Ses
树莓派4b+Ubuntu18.04+ROS Melodic安装全过程 Ubuntu18.04 Server下载安装格式化SD卡:点击下载格式化软件:SD Card Formatter,将SD卡格式化烧录系统到 TF卡点下载镜像文件Ubuntu-18.04.4-preinstalled-server-arm64+raspi4.img.xz,在本地解压为.img文件点击下载镜像烧录软件Win32 Disk Imager,并将镜像文件烧录到SD卡中烧录成功后拔出SD卡,插入到树莓派中,即可启动,系统初始账号和密码均为ubuntu,第一次登录会提醒修改密码。连接Wif
Ubuntu18.04+Azure Kinect DK配置全过程(SDK源码+ROS) 安装ROS Melodic点击右侧链接,按照官方网站的说明一步步安装,期间很少出现问题。Azure Kinect DK SDK源码安装安装lib4a.dev包sudo apt install libk4a1.4-dev文件拷贝cd /usr/lib/x86_64-linux-gnu/libk4a1.4sudo cp libdepthengine.so.2.0 /usr/lib/x86_64-linux-gnuSDK源码下载:git clone -b v1.4.0 https
Night-to-Day Image Translation for Retrieval-based Localization论文阅读笔记 摘要:视觉定位是许多机器人技术流程中的一个关键步骤,它允许机器人(大约)确定其在世界坐标系中的位置和方向。使用图像检索技术是一种有效且可扩展的视觉定位方法。这些方法在带有地理标记的图像数据库中识别与查询照片最相似的图像,并计算相对位姿。然而,在不同光照条件下的图像检索仍然是一个问题,如白天和黑夜等情况。在这篇论文中,我们探索了精确定位的任务,从同一区域的两次遍历在白天和晚上捕获的图像。我们提出了ToDayGAN——一个改进的图像转换模型,可以将夜间驾驶图像转换为更有用的白天表现。然后,我们比较白天图像和
Ubuntu16.04装机系列 这里写自定义目录标题安装Ubuntu16.04注意事项搜狗输入法安装安装截屏软件Kazam安装ROS Kinetic源码安装Pangolin源码安装Eigen安装Sophus安装Ubuntu16.04注意事项为Ubuntu分配磁盘空间:在Windows中右键计算机->管理->磁盘管理->删除卷(注:若要删除多个卷的话必须要保证得到的空白磁盘空间时一整块,意思就是要连续删除相邻的卷,不然最后会出错,一般空出250G就够用了)删除Ubuntu启动项若电脑现已有Windows+Ub