大模型中的Scaling Law计算方法

作者:nghuyong 

https://zhuanlan.zhihu.com/p/667489780

在大模型的研发中,通常会有下面一些需求:

1.计划训练一个10B的模型,想知道至少需要多大的数据?

2.收集到了1T的数据,想知道能训练一个多大的模型?

3.老板准备1个月后开发布会,给的资源是100张A100,应该用多少数据训多大的模型效果最好?

4.老板对现在10B的模型不满意,想知道扩大到100B模型的效果能提升到多少?

以上这些问题都可以基于Scaling Law的理论进行回答。本文是阅读了一系列 Scaling Law的文章后的整理和思考,包括Scaling Law的概念和推导以及反Scaling Law的场景,不当之处,欢迎指正。

核心结论

大模型的Scaling Law是OpenAI在2020年提出的概念[1],具体如下:

  1. 对于Decoder-only的模型,计算量(Flops), 模型参数量, 数据大小(token数),三者满足:。(推导见本文最后)

  2. 模型的最终性能主要与计算量,模型参数量和数据大小三者相关,而与模型的具体结构(层数/深度/宽度)基本无关。

ab68512626be1efbea65e34747ad60e5.png
固定模型的总参数量,调整层数/深度/宽度,不同模型的性能差距很小,大部分在2%以内

3. 对于计算量,模型参数量和数据大小,当不受其他两个因素制约时,模型性能与每个因素都呈现幂律关系

c443328a5d7c2766c9c35b60fcc8cafa.png

4. 为了提升模型性能,模型参数量和数据大小需要同步放大,但模型和数据分别放大的比例还存在争议。

5. Scaling Law不仅适用于语言模型,还适用于其他模态以及跨模态的任务[4]:

a2e68dfdf1b8e410b3e8f9409d5fa02d.png
这里横轴单位为PF-days: 如果每秒钟可进行 次运算,就是1 peta flops,那么一天的运算就是 这个算力消耗被称为1个petaflop/s-day。

核心公式 

(�)=�∞+(�0�)�

e3a6695ad39e7ec7b2c1e8810b6257ec.png

第一项是指无法通过增加模型规模来减少的损失,可以认为是数据自身的熵(例如数据中的噪音)

第二项是指能通过增加计算量来减少的损失,可以认为是模型拟合的分布与实际分布之间的差。根据公式,增大(例如计算量),模型整体loss下降,模型性能提升;伴随趋向于无穷大,模型能拟合数据的真实分布,让第二项逼近0,整体趋向于

大模型中的scaling law

下图是GPT4报告[5]中的Scaling Law曲线,计算量和模型性能满足幂律关系

2d84f937cfd501ffce4d3bbcecf1828a.png
  • 横轴是归一化之后的计算量,假设GPT4的计算量为1。基于10,000倍小的计算规模,就能预测最终GPT4的性能。

  • 纵轴是"Bits for words", 这也是交叉熵的一个单位。在计算交叉熵时,如果使用以 2 为底的对数,交叉熵的单位就是 "bits per word",与信息论中的比特(bit)概念相符。所以这个值越低,说明模型的性能越好。

Baichuan2

下图是Baichuan2[6]技术报告中的Scaling Law曲线。基于10M到3B的模型在1T数据上训练的性能,可预测出最后7B模型和13B模型在2.6T数据上的性能

fc7cd13477db88babeccb48bb93ea971.png

MindLLM

下图是MindLLM[7]技术报告中的Scaling Law曲线。基于10M到500M的模型在10B数据上训练的性能,预测出最后3B模型在500B数据上的性能。

ad1c8634bd45171c3a373300927d1e5a.png

Scaling Law实操: 计算效率最优

根据幂律定律,模型的参数固定,无限堆数据并不能无限提升模型的性能,模型最终性能会慢慢趋向一个固定的值

cdafabbce7c17cc3f32611d66a0fb530.png

如图所示,如果模型的参数量为(图中紫色的线),在数量达到,模型基本收敛。所以在数据量达到后,继续增加数据产生的计算量,没有同样计算量下提升模型参数量带来的收益大(计算效率更优)。根据,可以进一步转换成模型参数与计算量的关系,即: 模型参数为,在计算量为Flops,即PF-days时基本收敛。也就是右图中紫色线的拐点。

按照上面的思路,下面进行Scaling Law的实操。

首先准备充足的数据(例如1T),设计不同模型参数量的小模型(例如0.001B - 1B),独立训练每个模型,每个模型都训练到基本收敛(假设数据量充足)。根据训练中不同模型的参数和数据量的组合,收集计算量与模型性能的关系。然后可以进一步获得计算效率最优时,即同样计算量下性能最好的模型规模和数据大小的组合,模型大小与计算量的关系,以及数据大小与计算量的关系。

e1466ddf69fa33b78048c3e70851e69b.png

如图所示,根据左图可以看到计算量与模型性能呈现幂律关系(可以认为数据和模型都不受限制),根据中图和右图,可以发现,,即计算效率最优时,模型的参数与计算量的幂次成线性关系,数据量的大小也与计算量的幂次成线性关系。

根据,可以推算出,但是,分别是多少存在分歧。

OpenAI[1]认为模型规模更重要,即,而DeepMind在Chinchilla工作[2]和Google在PaLM工作[3]中都验证了,即模型和数据同等重要。

所以假定计算量整体放大10倍,OpenAI认为模型参数更重要,模型应放大 100.73 (5.32)倍,数据放大 100.27 (1.86)倍;后来DeepMind和Google认为模型参数量与数据同等重要,两者都应该分别放大 100.5 (3.16)倍。

f20edcb74daab0d1514573a88cea6cf9.png

例如在PaLM的实验中,计算量从 放大10倍到, 模型参数也提升了3.2倍,3.35B->10.7B。具体最好在自己的数据上做实验来获得你场景下的和

LLaMA: 反Scaling Law的大模型

假设遵循计算效率最优来研发LLM,那么根据Scaling Law,给定模型大小,可以推算出最优的计算量,进一步根据最优计算量就能推算出需要的token数量,然后训练就行。

但是计算效率最优这个观点是针对训练阶段而言的,并不是推理阶段,实际应用中推理阶段效率更实用。

Meta在LLaMA[8]的观点是:给定模型的目标性能,并不需要用最优的计算效率在最快时间训练好模型,而应该在更大规模的数据上,训练一个相对更小模型,这样的模型在推理阶段的成本更低,尽管训练阶段的效率不是最优的(同样的算力其实能获得更优的模型,但是模型尺寸也会更大)。根据Scaling Law,10B模型只需要200B的数据,但是作者发现7B的模型性能在1T的数据后还能继续提升。

25536ee8fecf445f9a69013725f2e99b.png

所以LLaMA工作的重点是训练一系列语言模型,通过使用更多的数据,让模型在有限推理资源下有最佳的性能。

具体而言,确定模型尺寸后,Scaling Law给到的只是最优的数据量,或者说是一个至少的数据量,实际在训练中观察在各个指标上的性能表现,只要还在继续增长,就可以持续增加训练数据。

74c93c85ecf00d9177b8d61a07064377.png

计算量、模型和数据大小的关系推导

对于Decoder-only的模型,计算量(Flops), 模型参数量(除去Embedding部分), 数据大小(token数), 三者的关系为:

推导如下,记模型的结构为:

decoder层数:

attention 隐层维度:

attention feedforward层维度:, 一般来说首先推导模型的参数量(忽略embedding,norm和bias)计算如下:

transformer每层包括: self-attetion 和 MLP 两个部分:

self-attention的参数为, 每个矩阵的维度均为,整体参数量:

MLP的层数的参数为,,

整体参数量:

所以每层的参数量为:,全部的 层的参数量为:,即

继续推导模型的前向推理的计算量:

计算量的单位是FLOPs,floating point operations 对于矩阵,,相乘的计算量为,一次加法一次乘法。假设Decoder层的输入,为batch size,为序列长度,为模型维度。

self-attention部分的计算:

输入线性层:,计算量为:

atention计算:,计算量为:

socre与V的计算:,计算量为:

输出线性层:,计算量为:

MLP部分的计算

升维:,计算量为:

降维:,计算量为:

所以整个decoder层的计算量为:,全部层为:反向传播计算量是正向的2倍,所以全部的计算量为:

平均每个token的计算量为

所以对于全部包含个token的数据集: 

�=�������≈6��

参考资料

  • [1] Scaling Laws for Neural Language Models

  • [2] Training Compute-Optimal Large Language Models

  • [3] PaLM 2 Technical Report

  • [4] Scaling Laws for Autoregressive Generative Modeling

  • [5] GPT-4 Technical Report

  • [6] Baichuan 2: Open Large-scale Language Models

  • [7] MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications

  • [8] LLaMA: Open and Efficient Foundation Language Models

  • [9] 人工智能中的算力单位Petaflop/s-day - 套牌神仙的文章 - 知乎

  • [10] 李开复带队零一万物发布开源大模型 Yi,如何解读?- 黄文灏的回答 - 知乎

  • [11] 介绍一些Scaling Laws - cingti的文章 - 知乎

  • [12] 分析transformer模型的参数量、计算量、中间激活、KV cache - 回旋托马斯x的文章 - 知乎

  • d51de0e24955b7e51de53c22ca462941.png


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

88dc000538e33f277e79584938f81a5a.png

id:DLNLPer,记得备注呦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值