GraphRAG综述来了~

3b1a96cf5378d1f9ea199e2c7733e160.png

论文:Graph Retrieval-Augmented Generation: A Survey

链接:https://arxiv.org/pdf/2408.08921

研究背景

这篇文章要解决的问题是如何利用图结构信息来增强大型语言模型(LLMs)的生成能力,解决LLMs在处理特定领域知识、实时更新信息和专有知识方面的局限性

研究难点包括:忽略文本之间的关系、冗余信息、缺乏全局信息等。

相关工作有检索增强生成(RAG)和基于图的语言模型(LLMs on graphs),以及知识库问答(KBQA)。

497b903fbd8c131c0618b1badd346e32.png

这篇论文提出了图检索增强生成(GraphRAG)方法来解决上述问题。

0d4f48a330378658a60322a224220825.png

具体来说,

  1. 图索引(G-Indexing):首先,构建或索引与下游任务相关的图数据库。图数据可以来自公开的知识图谱、自构建的数据或其他形式的数据。索引过程包括映射节点和边的属性,建立连接节点的指针,并组织数据以支持快速遍历和检索操作。

  2. 图引导检索(G-Retrieval):其次,根据用户查询从图数据库中提取相关信息。给定自然语言形式的用户查询,检索阶段旨在从知识图谱中提取最相关的元素(如实体、三元组、路径、子图)。

    dd2e706ba11628d9c032fa33b14ade0b.png

  3. 图增强生成(G-Generation):最后,基于检索到的图数据合成有意义的输出或响应。生成器将查询、检索到的图元素和一个可选的提示作为输入,生成响应。

    2001e334ff29d17ac7d63532d0c49ddc.png

509cef883534f2ea019bec5bcdc6fc63.png

83fcd4c92ecbf5739e71046039200c4b.png

实验设计

  1. 数据收集:使用了多个公开的知识图谱和自构建的图数据,包括通用知识图谱和领域知识图谱。

  2. 实验设置:实验在多个下游任务上进行,包括问答、信息抽取等。

  3. 样本选择:选择了多个基准数据集进行评估,如WebQSP、WebQ、CWQ等。

  4. 参数配置:使用了多种检索器和生成器模型,包括非参数检索器、基于语言模型的检索器和基于图神经网络的检索器。

结果与分析

  1. 问答任务:在知识库问答(KBQA)和常识问答(CSQA)任务上,GraphRAG显著提高了答案的准确性和相关性。

  2. 信息抽取:在实体链接(EL)和关系抽取(RE)任务上,GraphRAG通过利用图结构信息,提高了实体和关系的抽取精度。

  3. 其他任务:在其他任务如事实验证、链接预测、对话系统和推荐系统中,GraphRAG也表现出色,能够生成更加合理和准确的响应。

总体结论

71aa2246db41f702143d809f5d64a7fd.png

这篇论文系统地回顾了现有的GraphRAG方法,提出了GraphRAG的工作流程,并详细讨论了每个阶段的核心技术和训练方法。通过实验验证,GraphRAG在多个下游任务上显著提高了信息检索和生成任务的质量和准确性。未来的研究方向包括动态和自适应图的构建、多模态信息集成、可扩展和高效的检索机制、与图基础模型的融合、无损耗压缩检索上下文等。

该文由AI辅助人工共同完成


备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群

962cfd505fa232fbd062e743fcfae1ca.png

id:DLNLPer,记得备注呦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值