第1章 多项式

f(x),g(x)最大公因式为\varphi (x),则有u(x),v(x)满足u(x)f(x)+v(x)g(x)=\varphi (x),记为(f(x),g(x))=\varphi (x)

(f(x),g(x))=1等价于f(x),g(x)互素。

性质一:

2和5互素,5乘以一个数c除以2得到整数,那么c除以2也能被除得尽。

(f(x),g(x))=1,f(x)|g(x)h(x)\Rightarrow f(x)|h(x) 

证明:u(x)f(x)+v(x)g(x)=1,两边乘以h(x),u(x)f(x)h(x)+v(x)g(x)h(x)=h(x)

f(x)|u(x)f(x)h(x),f(x)|v(x)g(x)h(x)\Rightarrow f(x)|h(x)

性质二:

试想一个数被2除得尽,也被3除得尽,2和3互素,那么这个数也能被6除得尽。通过这个例子记住该性质!

(f(x),g(x))=1,f(x)|h(x),g(x)|h(x)\Rightarrow f(x)g(x)|h(x)

证明:f(x)|h(x) \Rightarrow h(x)=f(x)h_{1}(x)\Rightarrow g(x)|f(x)h_{1}(x)

f(x)和g(x)互素,根据性质一,g(x)|h_{1}(x)\Rightarrow h(x)=f(x)h_{1}(x)=f(x)g(x)h_{2}(x)\Rightarrow f(x)g(x)|h(x)

性质三:

f(x)不可约,f(x)|g(x)h(x)则f(x)至少整除g(x)或者h(x)中的其中一个。因为f(x)不可约,意味着不能分解成两个较低次数的多项式,所以它和任意多项式分公因式要么是f(x)自身要么为1,否则与f(x)不可约矛盾。然后利用性质一可证。

实际上若f(x)可约的话,g(x)和h(x)都不能被f(x)除尽,但是它们的乘积g(x)h(x)可能被f(x)除尽,如f(x)=2x*3x,g(x)=2x,h(x)=3x。

性质四:

主要为了证明初等因子的引理:

4.1 

f1(x)和g1(x)互素,则(f1(x),f2(x))和(g1(x),g2(x))的公因式d1(x),d2(x)互素

这是因为假如d1(x),d2(x)不互素(d1(x)整除f1(x),f2(x),d2(x)整除g1(x),g2(x)),就存在一个次数大于0的多项式d3(x),它整除d1(x),d2(x),当然也整除f1(x),f2(x),g1(x),g2(x)。即d3(x)是f1(x)和g1(x)的公因式。与f1(x)和g1(x)矛盾。

4.2

d1(x)互素和d2互素,又能整除d(x),则d1(x)d2(x) | d(x)用到了性质二。

4.3

d(x) | f1(x)g1(x)则可以找到f(x)和g(x)使d(x)=f(x)g(x),且f(x) | f1(x), g(x) | g1(x)

证明:

5. 艾森斯坦判别法存在一个素数p,满足p 不能整除an,但是能整除an-1,an-2, .... a0, 且p的平方不能整除a0,则多项式在有理域上不可约。 如果这样的素数不好找,可以令y=x+1,f(y) = f(x + 1)

6. 重因式:x-a的次数大于1,若次数为2,则x-a还能整除f(x)的导数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值