打卡第4天

文章探讨了目标检测的基础,从早期的滑动窗口方法到密集预测的演变,包括两阶段和单阶段方法。提到了anchor在解决物体尺度和重叠问题中的作用,以及Transformer在该领域的应用。还讨论了置信度、NMS、IOU等关键概念,并触及了正负样本不平衡问题和FocalLoss作为解决方案。
摘要由CSDN通过智能技术生成

目标检测基础

范式演化

滑动窗口:

将原图的多个窗口切片独立重复进行卷积的操作,替换成对整张原图进行卷积,然后再用窗口提取局部区域,后续仍用FC预测概率。 隐含的意义在于:

不同窗口之间可能会有重复区域,反复进行独立的卷积,且用的是相同的卷积核,浪费计算量

( 也可能是, 通过卷积将像素级的信息,进一步凝练 ?)

密集预测:

对特征图的每个像素,进行1x1的卷积,以替代全连接,将特征图转换为概率图。

对每个像素都进行预测,即为密集预测

方法论:

两阶段方法:

先产生窗,再基于窗内的特征进行预测

单阶段方法:

对特征的单点特征实现密集预测(能不能考虑融合其它信息)

分类:

基于anchor:解决物体重叠和不同大小

anchor-free

Transformer方法

基础知识:

置信度:

置信度可能与IOU有关? 置信度越高,则IOU越大? 并不一定,但很可能

NMS:

逐步从置信度最高的预测里,进行IOU的比较,来找到质量最好的框

IOU是实际指标, 置信度是网络预测

人们应该比较期望置信度与IOU趋势一致,但无法严格保证

边界框编码:

绝对偏移量数值较大,难以预测

推理时,还需要逆向解码

区域提议:

基于特征作二分类,仅判断其内是否存在物体,从而实现区域提议

问题:

物体尺度不一

不同物体存在重叠

改进:

anchor:

不同尺度,多个提议框

多个类别: 单阶段网络

正负网络不均衡问题:模型偏向背景预测

Focal Loss

未完待续...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值