文章目录
一、DDoS防护基础概念
1.1 什么是DDoS攻击
分布式拒绝服务(Distributed Denial of Service, DDoS)攻击是一种通过大量合法或伪造的请求占用目标服务器资源,使其无法正常提供服务的网络攻击方式。DDoS攻击通常具有以下特征:
特征 | 说明 | 示例 |
---|---|---|
分布式来源 | 攻击来自大量不同IP地址 | 僵尸网络控制的数千台设备同时发起请求 |
流量洪泛 | 短时间内产生远超正常水平的请求量 | 每秒数万次的API调用请求 |
资源耗尽 | 目标是耗尽服务器资源(带宽、CPU、内存等) | 数据库连接池被占满,正常用户无法连接 |
伪装性 | 攻击流量往往模仿正常业务请求 | 模拟正常用户浏览行为的HTTP请求 |
在SpringBoot应用中,常见的DDoS攻击类型包括:
- HTTP Flood:针对Web层的HTTP请求洪泛
- Slowloris:保持大量慢速HTTP连接耗尽服务器连接池
- CC攻击:针对计算密集型接口的重复请求
- API滥用:恶意爬虫或自动化工具高频调用API接口
1.2 为什么需要防护DDoS
对于SpringBoot应用来说,缺乏DDoS防护会导致:
- 服务不可用:正常用户无法访问服务,影响业务连续性
- 资源成本激增:云环境下自动扩容可能导致巨额账单
- 数据泄露风险:攻击可能掩盖其他安全入侵行为
- 品牌声誉损害:服务不可用影响用户信任
// 模拟一个未受保护的Controller
@RestController
public class VulnerableController {
@GetMapping("/api/data")
public String getData() {
// 这是一个计算密集型操作
String result = expensiveCalculation();
return result;
}
private String expensiveCalculation() {
// 模拟耗时操作
try {
Thread.sleep(100);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return "Expensive Result";
}
}
上述代码在没有防护的情况下,攻击者只需发起大量并发请求到/api/data
接口,就能快速耗尽服务器资源。
1.3 防护的基本原则
有效的DDoS防护应遵循以下原则:
- 分层防御:在网络层、应用层等多层次部署防护措施
- 纵深防御:不依赖单一防护机制,设置多道防线
- 最小权限:只允许必要的访问,默认拒绝其他所有请求
- 弹性设计:系统在承受攻击时能保持基本功能
- 可观测性:具备完善的监控和告警机制
二、SpringBoot限流防护机制
2.1 令牌桶算法实现
令牌桶算法是一种常用的限流算法,其工作原理如下:
- 令牌以固定速率添加到桶中(如每秒10个)
- 每个请求需要获取一个令牌才能被处理
- 当桶为空时,新请求将被限流
SpringBoot中可以使用Guava的RateLimiter实现:
import com.google.common.util.concurrent.RateLimiter;
@Service
public class RateLimitService {
// 每秒允许10个请求
private final RateLimiter rateLimiter = RateLimiter.create(10.0);
public boolean tryAcquire() {
return rateLimiter.tryAcquire();
}
@RestController
public class ProtectedController {
@Autowired
private RateLimitService rateLimitService;
@GetMapping("/api/protected")
public ResponseEntity<String> getProtectedData() {
if (!rateLimitService.tryAcquire()) {
return ResponseEntity.status(429)
.header("X-RateLimit-RetryAfter", "1")
.body("Too many requests");
}
// 正常业务逻辑
return ResponseEntity.ok("Protected Data");
}
}
}
参数说明:
参数 | 类型 | 说明 | 推荐值 |
---|---|---|---|
permitsPerSecond | double | 每秒允许的请求数 | 根据业务负载调整 |
warmupPeriod | long | 预热时间(毫秒) | 高并发系统建议5000 |
tryAcquireTimeout | long | 获取令牌超时时间 | 0表示立即返回 |
2.2 滑动窗口算法实现
滑动窗口算法比固定窗口更精确,可以避免临界问题。Redis+Lua是实现分布式限流的理想方案:
-- ratelimit.lua
local key = KEYS[1] -- 限流键
local limit = tonumber(ARGV[1]) -- 限流大小
local window = tonumber(ARGV[2]) -- 时间窗口(秒)
local now = tonumber(ARGV[3]) -- 当前时间戳
local clearBefore = now - window
redis.call('ZREMRANGEBYSCORE', key, 0, clearBefore)
local currentCount = redis.call('ZCARD', key)
if currentCount >= limit then
return 0
else
redis.call('ZADD', key, now, now)
redis.call('EXPIRE', key, window)
return 1
end
Java调用代码:
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;
@Service
public class RedisRateLimiter {
private final RedisTemplate<String, Object> redisTemplate;
private final RedisScript<Long> rateLimitScript;
public RedisRateLimiter(RedisTemplate<String, Object> redisTemplate) {
this.redisTemplate = redisTemplate;
this.rateLimitScript = RedisScript.of(
new ClassPathResource("scripts/ratelimit.lua"),
Long.class
);
}
public boolean allowRequest(String key, int limit, int window) {
Long result = redisTemplate.execute(
rateLimitScript,
Collections.singletonList(key),
limit,
window,
System.currentTimeMillis() / 1000
);
return result != null && result == 1;
}
}
2.3 分布式限流方案
在微服务架构中,需要统一的限流服务。Spring Cloud Gateway集成Redis限流示例:
# application.yml
spring:
cloud:
gateway:
routes:
- id: user-service
uri: lb://user-service
predicates:
- Path=/api/users/**
filters:
- name: RequestRateLimiter
args:
redis-rate-limiter.replenishRate: 10
redis-rate-limiter.burstCapacity: 20
redis-rate-limiter.requestedTokens: 1
自定义Key解析器:
@Bean
KeyResolver userKeyResolver() {
return exchange -> {
// 按用户限流
String userId = exchange.getRequest()
.getHeaders()
.getFirst("X-User-Id");
return Mono.just(userId != null ? userId : "anonymous");
};
}
三、验证机制防护
3.1 验证码防护
验证码是区分人类用户和机器流量的有效手段。SpringBoot集成Google reCAPTCHA示例:
@RestController
public class CaptchaController {
@Value("${recaptcha.secret}")
private String recaptchaSecret;
@PostMapping("/api/register")
public ResponseEntity<?> registerUser(
@RequestBody RegistrationRequest request,
@RequestHeader("g-recaptcha-response") String captchaResponse) {
// 验证reCAPTCHA
boolean valid = validateCaptcha(captchaResponse);
if (!valid) {
return ResponseEntity.badRequest().body("Invalid captcha");