glm-4v-9b_pytorch多模态OCR大模型

GLM-4V

GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

论文

模型结构

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。

算法原理

在强化文本能力的同时,我们首次推出了基于GLM基座的开源多模态模型GLM-4V-9B。这一模型采用了与CogVLM2相似的架构设计,能够处理高达1120 x 1120分辨率的输入,并通过降采样技术有效减少了token的开销。为了减小部署与计算开销,GLM-4V-9B没有引入额外的视觉专家模块,采用了直接混合文本和图片数据的方式进行训练,在保持文本性能的同时提升多模态能力。

环境配置

Docker(方法一)

GLM-4V是一种大型模型,它的全称是Generalized Linear Model-4VGLM-4V是一种广义线性模型,它是基于广义线性模型(Generalized Linear Model, GLM)的扩展和改进。 GLM-4V的原理如下: 1. 广义线性模型GLM):GLM是一种统计模型,用于建立因变量与自变量之间的关系。它通过将线性回归模型与非线性函数相结合,可以处理不满足正态分布假设的数据。GLM的基本假设是,因变量的分布可以通过一个链接函数与自变量的线性组合相关联。 2. 四个"V":GLM-4V中的四个"V"代表了四个重要的概念,分别是Variation、Variance、Value和Validation。 - Variation(变异性):GLM-4V关注因变量的变异性,通过分析因变量的变异程度来确定模型的拟合程度。 - Variance(方差):GLM-4V考虑了因变量的方差,通过对方差进行建模,可以更好地描述因变量的分布特征。 - Value(价值):GLM-4V关注因变量的价值,通过对因变量的价值进行建模,可以更好地理解因变量对自变量的响应。 - Validation(验证):GLM-4V通过验证模型的拟合程度和预测能力,来评估模型的有效性和可靠性。 3. 模型构建:GLM-4V模型构建包括以下几个步骤: - 数据准备:包括数据清洗、变量选择和数据转换等。 - 模型选择:选择适当的链接函数和误差分布族,并确定自变量的形式。 - 参数估计:使用最大似然估计或广义最小二乘法等方法,估计模型的参数。 - 模型诊断:对模型进行诊断,检验模型的拟合程度和假设条件是否满足。 - 模型评估:通过交叉验证等方法,评估模型的预测能力和稳定性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值