练习原文
作为练习函数和循环的简单途径,用牛顿法实现开方函数。
在这个例子中,牛顿法是通过选择一个初始点 z 然后重复这一过程求 Sqrt(x) 的近似值:
为了做到这个,只需要重复计算 10 次,并且观察不同的值(1,2,3,……)是如何逐步逼近结果的。 然后,修改循环条件,使得当值停止改变(或改变非常小)的时候退出循环。观察迭代次数是否变化。结果与 math.Sqrt 接近吗?
提示:定义并初始化一个浮点值,向其提供一个浮点语法或使用转换:
z := float64(1)
z := 1.0
关键信息
定义并初始化一个浮点值并套用计算方式: **z = z - (z*z-x)/(2*z)**
循环遍历查看变化(无限循环 直到结果没有变化)
目的是类似math.Sqrt()的效果,暂不考虑特殊情况
代码
package main
import (
"fmt"
"math"
)
func Sqrt(x float64) float64 {
// 根据提示 定义一个初始值 来套用公式
z := 1.00
// 临时变量 记录z 上次的值
temp := 0.00
for {
// 计算出最新的z值
z = z - (z*z-x)/(2*z)
fmt.Println(z)
if math.Abs(z-temp) < 0.000000000000001 {
// 当值停止改变(或改变非常小)的时候退出循环
break
} else {
// 赋值最后的值
temp = z
}
}
return z
}
func main() {
fmt.Println("牛顿法:", Sqrt(2))
fmt.Println("math.Sqrt(2):", math.Sqrt(2))
}
打印结果
1.5
1.4166666666666667
1.4142156862745099
1.4142135623746899
1.4142135623730951
1.414213562373095
牛顿法: 1.414213562373095
math.Sqrt(2): 1.4142135623730951