GMSK process

Gaussian filter

1. continuous-time impulse response of the Gaussian filter:

h(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t )^2}{2\sigma^2}}\textup{}

2. the frequency respone can be shown as,

H(f) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2\sigma^2}} e^{-j2\pi ft} dt

                cause

-\frac{t^2}{2\sigma^2} - j2\pi ft = -\frac{1}{2\sigma^2} \left(t + j{2\pi\sigma^2 f}\right)^2 - 2\pi^2 f^2 \sigma^2

                then

                                              H(f) = e^{-2\pi^2 f^2 \sigma^2} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2\sigma^2} (t +j2\pi f\sigma^2)^2} dt

                get                

                                             H(f) = e^{-2 \pi^2 f^2 \sigma^2}

the 3dB bandwidth should equal to the bandwith of singal to satisfy the requirement of filter design, so, 

                                            H(f)_{max}= 1\rightarrow H(B) = e^{-2 \pi^2 (B)^2 \sigma^2} = \sqrt{\frac{1}{2}}(3.01dB)

               then 

                                                \sigma^2 = \frac{ln2}{4\pi^2B^2}       

when we normalize the t and use the t/T (T is symbol period), then the \sigma can be represented as,

\sigma^2 = \frac{ln2}{4\pi^2(BT)^2} 

function h = gaussdesignImpl(bt,span,sps)

% Check if filter order is even
sps_span = sps*span;
coder.internal.errorIf(isodd(sps_span),'signal:gaussdesign:OddFilterOrder')
filtLen = sps_span+1;

% Convert to t in which to compute the filter coefficients
t = linspace(-span/2,span/2,filtLen);

% Equation 6.53 of [1], page 290 is
% a = sqrt(log(2)/2)/B, here we use alpha = a/T
alpha = sqrt(log(2)/2)/(bt);

% Equation 5.54 of [1] is
% h = (sqrt(pi)/a)*exp(-(t1*pi/a).^2); 
% We use t = t1/T, alpha = a/T.  Then
% h = (sqrt(pi)*T/alpha)*exp(-(t*pi/alpha).^2); 
% But then we normalize, so T is not needed.
h = (sqrt(pi)/alpha)*exp(-(t*pi/alpha).^2); 
 
% Normalize coefficients
h = h./sum(h);

end
% code forward from matlab internal code

   BT is 3dB bandwidth bit duration product.  which can totally describe the filter characteristic.

we can see the BT is smaller, the sidelobe is smaller, but the ISI is more obvious.

GMSK

the GMSK process:

 the sequence of M-ary data symbols is shaped with Gaussian filter, the symbol  rect(\frac{t}{Tb}) do convolution with h(t), shown as,

q(t)=\int_{-\infty}^{\infty} h(\tau ) \cdot \text{rect}\left(\frac{t-\tau}{T_b}\right) \, d\tau

=\int_{t-\frac{T_b}{2}}^{t+\frac{T_b}{2}} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\tau)^2}{2\sigma^2}}\textup{} d\tau=\int_{\frac{(t-\frac{T_b}{2})}{\sigma}}^{\frac{(t+\frac{T_b}{2})}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(u)^2}{2}}\textup{} du

the CDF function is shown as,

\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du

so the phase response can be present as,

q(t)= \Phi\left(\frac{t+\frac{T_b}{2}}{\sigma}\right) - \Phi\left(\frac{t-\frac{T_b}{2}}{\sigma}\right)

=\Phi\left(\frac{2\pi B(t+\frac{T_b}{2}))}{\sqrt{\ln(2)}}\right) - \Phi\left(\frac{2\pi B(t-\frac{T_b}{2}))}{\sqrt{\ln(2)}}\right)

 GMSK is kind of Continuous-phase modulation(CPM), to make the phase continuity, the q(t) should be normalized according to below.

\beta(q((n+1)T_b)-q(nT_b))= 0.5

\bar{q}(t)= q(t) * \beta

 In CPM, the baseband representation of the modulated signal is

s(t) = \exp\left[j2\pi \left(\sum_{i=0}^{n} \alpha_i h \bar{q}(t-iT_b)\right)\right], \quad \text{for } nT_b < t < (n+1)T_b

 h is modulation index, for the MSK the h = 0.5  that make the minum frequency offset to keep the carrier  orthogonal.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值