线性系统分析

定义

        满足叠加性的系统就是线性系统,叠加性要求信号加权和的响应等于系统对每个独立输入信号对应的响应的加权和。       

         因此可得

x(n)=\sum_{k=1}^{M-1}a_kx_k(n) \overset{\tau}{\rightarrow}y(n)=\sum_{k=1}^{M-1}a_ky_k(n)

                                                                                  y_k(n)=\tau[x_k(n)],k=1,2,3,...M-1

卷积和

       输入信号表示成加权冲激和的任意信号x(n)

x(n)=\sum_{k=-\infty }^{k=\infty}x(k)\delta (n-k)         

       那么系统对x(n)的响应也是相应加权输出的和,即,

y(n)=\tau[\sum_{k=-\infty }^{k=\infty}x(k)\delta(n-k)] =\sum_{k=-\infty }^{k=\infty}x(k)\tau[\delta(n-k)]]=\sum_{k=-\infty }^{k=\infty}x(k)h(n,k)]

        再推导时,利用了系统的线性特性还不是他的时不变特性,因此可以应用到任何线性时变系统。 

 线性时不变系统 

如果系统是时不变的,则根据时不变性质,

h(n-k) = \tau (\delta(n-k))

可以进一步简化为,

        \sum_{k=-\infty }^{k=\infty}x(k)\tau[\delta(n-k)]] \rightarrow y(n) = \sum_{k=-\infty }^{k=\infty}x(k)h(n-k)]

对于连续系统同样可以得到,

                                                        y(t) = \int_{-\infty}^{\infty}x(s)h(t-s)ds

 线性时变系统

对于连续线性时变系统,系统响应可以表示为:

w(t)= \int x(s)K_1(t,s)ds

s = \xi -t

 w(t) = \int x(\xi-t)K_1(t,\xi-t)d\xi

令 g(t,\xi) = K_1(t,\xi-t) \to w(t) = \int x(\xi-t)g(t,\xi)d\xi

对于线性时变系统而言,其时域系统响应是一个和时间 ,时延相关的二维函数。

如果x(t) g(t, \xi)(稳定系统)满足绝对可积的,,g(t, \xi)可表示为关于  \nu -t的傅里叶变换形式则,

g(t,\xi) = \int{U(\xi,\nu)e^{j2\pi \nu t}d\nu } 

 w(t) = \int{\int{x( \xi -t )e^{j2\pi \nu t }U(\xi,\nu)}d\nu d\xi} 

这里的 \xi 代表的是时延, 而 \nu 代表的为频偏。

而 U(\xi,\nu) 代表的是时延-频偏的色散方程(delay-Doppler) spreading function

将g(t, \xi)表示为关于  \xi -f 的傅里叶变换形式则,

g(t,f) =\int{ \int{U(\xi,\nu)e^{j2\pi (\nu t-f\xi )}d\nu d\xi}} 

通过 g(t, \xi)建立起 时延-频偏 域 和 时频 域之间的关系, 而实际上其关系为二维傅里叶变换对。

上述公式为逆辛傅里叶变换(Inverse Symplectic Fourier Transform,  ISFT

辛傅里叶变换为:

U(\xi,\nu)=\int{ \int{g(t,f) e^{-j2\pi (\nu t-f\xi )}dtdf}}

实际中的多径场景是一个典型的线性时变系统。

多径环境一般为有限径,如下图

因此接收信号可以表示为:

 r(t) = \sum_{p=0}^{P}{s(t- \tau_p)e^{-j2\pi \nu_p (t-\tau_p)}}

其在 时域的信道响应为:

h_H(t) = \sum_{p=0}^{P}{h_pe^{-j2\pi \nu_p t } \delta (\tau - \tau_p)}

因为h_H(t) =\int{S_h(\tau,\nu)e^{j2\pi \nu t}d\nu } 在 时延-频移域可以表示为

S_H(\tau,\nu) = \sum_{p=0}^{P}{h_p \delta (\tau - \tau_p ) \delta (\nu - \nu_p ) }

又因为 L_H(t,f) = \int{h_H(t,\tau)e^{-j2\pi f \tau}d \tau}  在时-频域可以表示为

L_H(t,f) =\int\int{ S_H(\tau, \nu)e^{j2\pi(t\nu -f \tau) }d \tau d \nu}

离散化

t = n * T_s; f= m * f_s; \nu = k/NT_s; \tau = l/M f_s;

d\tau = 1/Mf_s; d\nu = 1\ NT_s;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值