Recall Precision IoU

本文详细介绍了机器学习中的评估指标Recall(查全率)、Precision(查准率)和IoU(Intersection over Union)。通过TP、FP、TN、FN的概念解析这些指标的含义,讨论了阈值对Precision和Recall的影响,以及Precision-Recall曲线、Approximated Average Precision和Interpolated Average Precision在评估分类器性能中的作用。IoU则用于衡量目标检测的准确性,定义为检测结果与真实框的交集与并集之比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recall Precision IoU

参考:周志华 《机器学习》

http://blog.csdn.net/hysteric314/article/details/54093734

  • TP,FP,TN,FN
  • Recall
  • Precision
  • IoU

TP,FP,TN,FN

对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为
1. 真正例(TP:true positive) :真实情况为正例,预测结果也为正例
2. 假正例(FP:false positive):真实情况为反例,预测结果为正例
3. 真反例(TN:true negative):真实情况为反例,预测结果为反例
4. 假反例(FN:false negative):真实情况为反例,预测结果为正例

查全率Recall

R=TP/(TP+FN)
在预测对了的内容上,真正例所占的比例

查准率Precision

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值