Recall Precision IoU
参考:周志华 《机器学习》
http://blog.csdn.net/hysteric314/article/details/54093734
- TP,FP,TN,FN
- Recall
- Precision
- IoU
TP,FP,TN,FN
对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为
1. 真正例(TP:true positive) :真实情况为正例,预测结果也为正例
2. 假正例(FP:false positive):真实情况为反例,预测结果为正例
3. 真反例(TN:true negative):真实情况为反例,预测结果为反例
4. 假反例(FN:false negative):真实情况为反例,预测结果为正例
查全率Recall
R=TP/(TP+FN)
在预测对了的内容上,真正例所占的比例

本文详细介绍了机器学习中的评估指标Recall(查全率)、Precision(查准率)和IoU(Intersection over Union)。通过TP、FP、TN、FN的概念解析这些指标的含义,讨论了阈值对Precision和Recall的影响,以及Precision-Recall曲线、Approximated Average Precision和Interpolated Average Precision在评估分类器性能中的作用。IoU则用于衡量目标检测的准确性,定义为检测结果与真实框的交集与并集之比。
最低0.47元/天 解锁文章

1921

被折叠的 条评论
为什么被折叠?



