问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
我们可以通过下面的图标来展示回溯法的过程,从而更加有助于我们的理解 :
我们在试探的过程中,皇后的放置需要检查他的位置是否和已经放置好的皇后发生冲突,为此需要以及检查函数来检查当前要放置皇后的位置,是不是和其他已经放置的皇后发生冲突
假设有两个皇后被放置在(i,j)和(k,l)的位置上,明显,当且仅当|i-k|=|j-l| 时,两个皇后才在同一条对角线上。
(1)先从首位开始检查,如果不能放置,接着检查该行第二个位置,依次检查下去,直到在该行找到一个可以放置一个皇后的地方,然后保存当前状态,转到下一行重复上述方法的检索。
(2)如果检查了该行所有的位置均不能放置一个皇后,说明上一行皇后放置的位置无法让所有的皇后找到自己合适的位置,因此就要回溯到上一行,重新检查该皇后位置后面的位置。
解法一:
#include <stdio.h>
#include <stdlib.h>
#define max 4
//sum用于描述解的可能的个数,每当输出一次复合要求的位置
//sum的数量就会被+1
int queen[max], sum=0; /* max为棋盘最大坐标 */
void show() /* 输出所有皇后的坐标 */
{
int i;
printf("(");
//i代表行数,queen[i]代表当前行元素所处的列数,
//注意此处下标是从0开始的
for(i = 0; i < max; i++)
{
printf(" %d", queen[i]+1);
}
printf(")\n");
//每次输出一种解的时候,那么他的解的数量就会增加1
sum++;
}
//此函数用于判断皇后当前皇后是否可以放在此位置
int PLACE(int n) /* 检查当前列能否放置皇后 */
{
//queen[i] == queen[n]用于保证元素不能再同一列
//abs(queen[i] - queen[n]) == abs(n - i)用于约束元素不能再同一行且不能再同一条斜线上
int i;
for(i = 0; i < n; i++) /* 检查横排和对角线上是否可以放置皇后 */
{
if(queen[i] == queen[n] || abs(queen[i] - queen[n]) == abs(n - i))
{
return 0;
}
}
return 1;
}
//核心函数,回溯法的思想
void NQUEENS(int n) /* 回溯尝试皇后位置,n为横坐标 */
{
int i;
for(i = 0; i < max; i++)
{
//首先将皇后放在第0列的位置,对于第一次来说是肯定成立的
//所以第一次将皇后放在第0行0列的位置
queen[n] = i; /* 将皇后摆到当前循环到的位置 */
if(PLACE(n))
{
if(n == max - 1)
{
show(); /* 如果全部摆好,则输出所有皇后的坐标 */
}
else
{
NQUEENS(n + 1); /* 否则继续摆放下一个皇后 */
}
}
}
}
int main()
{
NQUEENS(0); /* 从横坐标为0开始依次尝试 */
printf("\n");
printf("总共的解法有%d种\n", sum);
return 0;
}
解法二:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define INITIAL -10000 //棋盘的初始值
void init(int a[],int n) //对棋盘进行初始化
{
int *p;
for (p = a; p < a +n; ++p)
{
*p = INITIAL;
}
}
int valid(int a[],int row, int col,int n) //判断第row行第col列是否可以放置皇后
{
int i;
for (i = 0; i <n; ++i) //对棋盘进行扫描
{
if (a[i] == col || abs(i - row) == abs(a[i] - col)) //判断列冲突与斜线上的冲突
return 0;
}
return 1;
}
void print(int a[],int n) //打印输出N皇后的一组解
{
int i, j;
for (i = 0; i <n; ++i)
{
for (j = 0; j <n; ++j)
{
if (a[i] != j) //a[i]为初始值
printf("%c ", '0');
else //a[i]表示在第i行的第a[i]列可以放置皇后
printf("%c ", '1');
}
printf("\n");
}
printf("\n");
for (i = 0; i < n; ++i)
printf("%d ", a[i]+1);
printf("\n");
printf("--------------------------------\n");
}
void queen(int a[],int n) //N皇后程序
{
int m= 0;
int i = 0, j = 0;
while (i <n)
{
while (j < n) //对i行的每一列进行探测,看是否可以放置皇后
{
if(valid(a,i, j,n)) //该位置可以放置皇后
{
a[i] = j; //第i行放置皇后
j = 0; //第i行放置皇后以后,需要继续探测下一行的皇后位置,所以此处将j清零,从下一行的第0列开始逐列探测
break;
}
else
{
++j; //继续探测下一列
}
}
if(a[i] == INITIAL) //第i行没有找到可以放置皇后的位置
{
if (i == 0) //回溯到第一行,仍然无法找到可以放置皇后的位置,则说明已经找到所有的解,程序终止
break;
else //没有找到可以放置皇后的列,此时就应该回溯
{
--i;
j = a[i] + 1; //把上一行皇后的位置往后移一列
a[i] = INITIAL; //把上一行皇后的位置清除,重新探测
continue;
}
}
if (i == n - 1) //最后一行找到了一个皇后位置,说明找到一个结果,打印出来
{
printf("answer %d : \n", ++m);
print(a,n);
//不能在此处结束程序,因为我们要找的是N皇后问题的所有解,此时应该清除该行的皇后,从当前放置皇后列数的下一列继续探测。
//_sleep(600);
j = a[i] + 1; //从最后一行放置皇后列数的下一列继续探测
a[i] = INITIAL; //清除最后一行的皇后位置
continue;
}
++i; //继续探测下一行的皇后位置
}
}
int main()
{
int n;
printf("please input the number of the queen:");
scanf("%d",&n);
int a[n];
init(a,n);
queen(a,n);
return 0;
}
效果截图: