1.TensorFlow的主要依赖包
1.1Protocol Buffer
Protocot Buffer是谷歌开发的处理结构化数据的工具。
结构化数据:举例我们要记录一些用户信息,每个用户信息包括用户名称、用户ID和E-mail地址。那么一个用户的信息可以表示为以下形式:
name:张三
id:12345
email:zhangsan@abc.com
上面的用户信息就是一个机构化的数据。我们介绍的结构化数据和大数据中的结构化数据的概念不同,我们介绍的结构化数据指的是拥有多种属性的数据。比如上述的用户信息中包含名称、ID和E-mail地址三种不同属性,那么它就是一个结构化数据。当要将这些结构化的用户信息持久化或进行网络传输时,就需要先将它们序列化。所谓序列化,是将结构化的数据变成数据流的格式,简单地说就是变为一个字符串。如何将结构化的数据序列化,并从序列化之后的数据流中还原出原来的结构化数据,统称为处理结构化数据,这就是Protocol Buffer解决的主要问题。
除了Protocol Buffer之外,XML和JSON是两种比较常用的结构化数据处理工具。比如将上面的用户信息使用json格式表达,那么数据的格式为:
{“name”:“张三”,
“id”:“12345”,<
本文详细介绍了TensorFlow的主要依赖包Protocol Buffer和Bazel,包括它们的作用、特点及在TensorFlow中的应用。接着,文章提供了TensorFlow的两种安装方法:Docker安装和pip安装,其中Docker安装方便快捷,pip安装则需要处理依赖关系。最后,通过一个简单的加法样例展示了如何测试安装好的TensorFlow环境。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



