2 周期为2pi的函数展开为傅里叶级数

周期为2pi的函数展开为傅里叶级数

周期为2pi的函数

周期 T = 2 π f ( x ) = f ( x + 2 π ) T=2\pi \quad f(x)=f(x+2\pi) T=2πf(x)=f(x+2π)
在这里插入图片描述
把三角函数转化为无数三角函数的加和
f ( x ) = ∑ n = 0 ∞ a n c o s n x + ∑ n = 0 ∞ b n s i n x = a 0 c o s 0 x + ∑ n = 1 ∞ a n c o s n x + b 0 s i n 0 x + ∑ n = 1 ∞ b n s i n x = a 0 + ∑ n = 1 ∞ a n c o s n x + ∑ n = 1 ∞ b n s i n x \begin{aligned} f(x) &=\sum_{n=0}^{\infty}a_n cos nx+ \sum_{n=0}^{\infty}b_n sinx \\ &= a_0 cos0x + \sum_{n=1}^{\infty}a_n cos nx + b_0 sin0x + \sum_{n=1}^{\infty}b_n sinx \\ &=a_0 + \sum_{n=1}^{\infty}a_n cos nx + \sum_{n=1}^{\infty}b_n sinx \\ \end{aligned} f(x)=n=0ancosnx+n=0bnsinx=a0cos0x+n=1ancosnx+b0sin0x+n=1bnsinx=a0+n=1ancosnx+n=1bnsinx

而有些教科书上的定义为:
在这里插入图片描述

求a0

∫ − π π f ( x ) d x = ∫ − π π a 0 d x + ∫ − π π ∑ n = 1 ∞ a n c o s n x d x + ∫ − π π ∑ n = 1 ∞ b n s i n x d x = a 0 ∫ − π π d x = a 0 x ∣ − π π = 2 π a 0 \begin{aligned} \int_{-\pi}^{\pi}f(x)dx &= \int_{-\pi}^{\pi} a_0 dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty}a_n cos nx dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty}b_n sinx dx \\ &= a_0 \int_{-\pi}^{\pi} dx = a_0 x \mid_{-\pi}^{\pi} = 2 \pi a_0 \end{aligned} ππf(x)dx=ππa0dx+ππn=1ancosnxdx+ππn=1bnsinxdx=a0ππdx=a0xππ=2πa0
所以: a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)dx a0=2π1ππf(x)dx

可能是为了抹去分母上的2,许多教科书上把公式定义为
在这里插入图片描述
此时: a 0 = 1 π ∫ − π π f ( x ) d x a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)dx a0=π1ππf(x)dx

求an

等式两边乘以 c o s m x cosmx cosmx,求积分
∫ − π π f ( x ) c o s m x d x = ∫ − π π a 0 2 c o s m x d x + ∫ − π π ∑ n = 1 ∞ a n    c o s n x c o s m x d x + ∫ − π π ∑ n = 1 ∞ b n s i n n x c o s m x d x \begin{aligned} \int_{-\pi}^{\pi}f(x)cosmxdx &= \int_{-\pi}^{\pi} \frac{a_0}{2} cosmxdx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty}a_n\;cosnxcosmxdx+ \int_{-\pi}^{\pi} \sum_{n=1}^{\infty}b_nsinnxcosmxdx \end{aligned} ππf(x)cosmxdx=ππ2a0cosmxdx+ππn=1ancosnxcosmxdx+ππn=1bnsinnxcosmxdx
等式的右边只剩下 n = m n = m n=m 的情况下不等于0
∫ − π π f ( x ) c o s m x d x = ∫ − π π f ( x ) c o s n x d x = ∫ − π π ∑ n = 1 ∞ a n    c o s n x c o s n x d x = a n ∫ − π π ∑ n = 1 ∞    c o s n x 2 d x = a n π \begin{aligned} \int_{-\pi}^{\pi}f(x)cosmxdx &= \int_{-\pi}^{\pi}f(x)cosnxdx \\ &= \int_{-\pi}^{\pi} \sum_{n=1}^{\infty}a_n\;cosnxcosnxdx \\ &=a_n\int_{-\pi}^{\pi} \sum_{n=1}^{\infty}\;cosnx^2dx \\ &=a_n \pi \end{aligned} ππf(x)cosmxdx=ππf(x)cosnxdx=ππn=1ancosnxcosnxdx=anππn=1cosnx2dx=anπ

所以: a n = 1 π ∫ − π π f ( x ) c o s n x d x a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cosnxdx an=π1ππf(x)cosnxdx

求bn

等式两边乘以 s i n m x sinmx sinmx,求积分

所以: b n = 1 π ∫ − π π f ( x ) s i n n x d x b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sinnxdx bn=π1ππf(x)sinnxdx

结论

周期为 2 π 2\pi 2π函数的傅里叶展开为:

f ( x ) = f ( x + 2 π ) T = 2 π f(x)=f(x+2\pi) \quad T=2\pi f(x)=f(x+2π)T=2π

f ( x ) = a 0 2 + ∑ n = 1 ∞ a n c o s n x + ∑ n = 1 ∞ b n s i n x f(x) =\frac{a_0}{2} + \sum_{n=1}^{\infty}a_n cos nx + \sum_{n=1}^{\infty}b_n sinx f(x)=2a0+n=1ancosnx+n=1bnsinx

a 0 = 1 2 π ∫ − π π f ( x ) d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)dx a0=2π1ππf(x)dx

a n = 1 π ∫ − π π f ( x ) c o s n x d x a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cosnxdx an=π1ππf(x)cosnxdx

b n = 1 π ∫ − π π f ( x ) s i n n x d x b_n = \frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sinnxdx bn=π1ππf(x)sinnxdx

原视频:
https://www.bilibili.com/video/av34556069/?spm_id_from=333.788.videocard.0

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值