基于使用学习排序算法的Web服务学习的个性化的决策战略 摘要----为了从类似的服务列表中进行功能上的选择,用户往往需要根据多个QoS准则做出他们的决定,它们需要对目标服务。在这个过程中,不同的用户可能遵循不同的决策策略,有些是补偿性的,在这个补偿中在所有评估测量中只有一个总体价值。目前大多数的QoS的基础服务选择系统并不在排序过程中考虑这些决策策略,这样我们认为至关重要的是为个人用户生成精确的排序结果。在本文中,我们提出了一个战略决策为基础的服务。此
迁移学习与图形合作正规化 摘要----迁移学习被确定为一种有效的技术,去充分利用丰富的数据标记为目标域建立一个准确的分类。这个基本假设是,输入域可以共享某些知识结构,它可以被编码成常见的潜在因素和保留原始数据的重要属性,例如,统计特性和几何结构。在本文中,我们表明,输入数据的不同性质可以是彼此互补的,并且同时探索它们可以使学习模型应用到不同的域中。我们提出了一个总体框架,称为图形联合正则迁移学习(GTL),其中,各个矩阵因
基于在软件工程中对贝叶斯网络的循证决策 基于在软件工程中对贝叶斯网络的循证决策摘要:在软件工程中的推荐系统应该设计成集成依据并成为从业人员的经验。贝叶斯网络为以证据为基础的决策提供了自然统计框架,通过结合现有证据的综合概要与相关的不确定性(结果的不确定性)。在这次学习中,我们从事计算生物学中的铅含量、医疗决策和软件工程中贝叶斯网络的研究应用,根据1)软件工程中主要解决的挑战,2)贝叶斯网络技术过去用于学习变量之间的因果关系,3)贝叶