Ubuntu16.04 安装OpenCV&OpenCL

Ubuntu16.04 安装OpenCV&OpenCL

Summary概述

因为课程需要,我就按师兄要求在Ubuntu环境下安装了OpenCV 3.2.0、 intel版本和nvidia版本的OpenCL。所以,这篇文章记录了安装过程,最后还有测试是否安装成功。

OpenCL介绍

//说些什么好呢

一. 安装OpenCV3.2.0

安装OpenCV的过程可以说是比较简单,一般不会出什么错误。

1.首先,安装一些依赖:

sudo apt-get install build-essential libgtk2.0-dev libjpeg-dev libtiff5-dev libjasper-dev libopenexr-dev cmake libeigen3-dev yasm libfaac-dev libtheora-dev libx264-dev libv4l-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev ffmpeg

2.然后在OpenCV的官网上下载3.2版本源码sources的压缩包。

3.下载好压缩包之后,解压压缩包到某文件夹(用windows习惯了,直接右键提取到此处。。。)

4.终端中cd到该解压缩的文件夹中,然后创建build文件夹 mkdir build

5.进入build目录 cd build

6.编译opencv源码:

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

7.安装:

sudo make install

如下图所示:

最后,在终端检查opencv版本,如图所示,是opencv3.2.0

二. 安装intel cpu版本的OpenCL

因为我的电脑是intel CPU 和nividi GPU, 所以,如果希望使用Intel CPU作为并行设备,则必须安装Intel SDK,如果使用NVIDIA GPU作为并行设备,则必须安装NVIDIA SDK

1.安装clinfo,clinfo是一个显示OpenCL平台和设备的软件,安装后,在命令行输入clinfo即可验证。`

sudo apt-get install clinfo

2.在intel官网上下载了intel SDK的tgz文件,并且解压。

3.安装依赖

sudo apt install dkms xz-utils openssl libnuma1 libpciaccess0 bc curl libssl-dev lsb-core libicu-dev

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF

echo "deb http://download.mono-project.com/repo/debian wheezy main" | sudo tee /etc/apt/sources.list.d/mono-xamarin.list

sudo apt-get update

sudo apt-get install mono-complete

4.进入intel SDK解压目录,开始安装

sudo sh install_GUI.sh

按照提示信息安装,安装时可能会提示“Unsupported OS”,点击next无视掉。
安装到“Installation summary”页面时,点击“Customize”自定义安装组件,选择除了“Set of OpenCL(TM) files for Android* target”以外的所有组件。
无视Missing libraries,next继续,点Install安装。

5.安装后,在命令行中输入clinfo就能看到intel的平台和设备。

三. 安装nvidia gpu版本的OpenCL

1.这里需要根据NVIDIA设备的型号来选择驱动版本,旧版本不支持新GPU,同样,新版本也可能会不支持旧GPU,我上网查询到一个快速简单的方法:点击系统设置->软件和更新->附加驱动,如下图所示,然后选择invidia私有驱动,退出并保存修改。

2.在终端输入nvidia-settings,会打开nvidia 显卡的选项(或许这步还需要安装nvidia-settings、 nvidia-prime),可以切换nvidia 独显和intel 集显

3.安装与OpenCL有关的包

sudo apt-get install nvidia-<version here>-uvm nvidia-opencl-dev nvidia-modprobe nvidia-libopencl1-<version here> nvidia-opencl-icd-<version here>

4.安装CUDA toolkit

sudo apt-get install nvidia-cuda-toolkit

5.安装完成后,命令行中输入clinfo就可以看到已找到intel平台和CPU设备、NVIDIA平台和GPU设备。

四. 测试安装结果

下面是个入门程序,已经注释好了,注释包括了基本原理的解析,可以通过直接阅读和调试程序学习OpenCL了。本程序是读取电脑中的支持OpenCL的硬件nvidia和intel和AMD等信息,然后显示在屏幕上。

程序代码 opencl_hello.c

#include <stdio.h>  
#include <stdlib.h>  
#include <string.h>  


#ifdef MAC  
#include <OpenCL/cl.h>  
#else  
#include <CL/cl.h>  
#endif  

int main() {  

    /* Host data structures */  
    cl_platform_id *platforms;  
    //每一个cl_platform_id 结构表示一个在主机上的OpenCL执行平台,就是指电脑中支持OpenCL的硬件,如nvidia显卡,intel CPU和显卡,AMD显卡和CPU等  
    cl_uint num_platforms;  
    cl_int i, err, platform_index = -1;  

    /* Extension data */  
    char* ext_data;                           
    size_t ext_size;     
    const char icd_ext[] = "cl_khr_icd";  

    //要使platform工作,需要两个步骤。1 需要为cl_platform_id结构分配内存空间。2 需要调用clGetPlatformIDs初始化这些数据结构。一般还需要步骤0:询问主机上有多少platforms  

    /* Find number of platforms */  
    //返回值如果为-1就说明调用函数失败,如果为0标明成功  
    //第二个参数为NULL代表要咨询主机上有多少个platform,并使用num_platforms取得实际flatform数量。  
    //第一个参数为1,代表我们需要取最多1个platform。可以改为任意大如:INT_MAX整数最大值。但是据说0,否则会报错,实际测试好像不会报错。下面是步骤0:询问主机有多少platforms  
    err = clGetPlatformIDs(5, NULL, &num_platforms);          
    if(err < 0) {          
        perror("Couldn't find any platforms.");           
        exit(1);                              
    }                                     

    printf("I have platforms: %d\n", num_platforms); //本人计算机上显示为2,有intel和nvidia两个平台  

    /* Access all installed platforms */  
    //步骤1 创建cl_platform_id,并分配空间  
    platforms = (cl_platform_id*)                     
        malloc(sizeof(cl_platform_id) * num_platforms);   
    //步骤2 第二个参数用指针platforms存储platform  
    clGetPlatformIDs(num_platforms, platforms, NULL);         

    /* Find extensions of all platforms */  
    //获取额外的平台信息。上面已经取得了平台id了,那么就可以进一步获取更加详细的信息了。  
    //一个for循环获取所有的主机上的platforms信息  
    for(i=0; i<num_platforms; i++)   
    {  
        /* Find size of extension data */  
        //也是和前面一样,先设置第三和第四个参数为0和NULL,然后就可以用第五个参数ext_size获取额外信息的长度了。  
        err = clGetPlatformInfo(platforms[i],             
            CL_PLATFORM_EXTENSIONS, 0, NULL, &ext_size);      
        if(err < 0)   
        {  
            perror("Couldn't read extension data.");              
            exit(1);  
        }     

        printf("The size of extension data is: %d\n", (int)ext_size);//我的计算机显示224.  

        /* Access extension data */    
        //这里的ext_data相当于一个缓存,存储相关信息。  
        ext_data = (char*)malloc(ext_size);   
        //这个函数就是获取相关信息的函数,第二个参数指明了需要什么样的信息,如这里的CL_PLATFORM_EXTENSIONS表示是opencl支持的扩展功能信息。我计算机输出一大串,机器比较新(专门为了学图形学而购置的电脑),支持的东西比较多。  
        clGetPlatformInfo(platforms[i], CL_PLATFORM_EXTENSIONS,       
            ext_size, ext_data, NULL);                
        printf("Platform %d supports extensions: %s\n", i, ext_data);  

        //这里是输出生产商的名字,比如我显卡信息是:NVIDIA CUDA  
        char *name = (char*)malloc(ext_size);  
        clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME,     
            ext_size, name, NULL);                
        printf("Platform %d name: %s\n", i, name);  

        //这里是供应商信息,我显卡信息:NVIDIA Corporation  
        char *vendor = (char*)malloc(ext_size);  
        clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR,       
            ext_size, vendor, NULL);                  
        printf("Platform %d vendor: %s\n", i, vendor);  

        //最高支持的OpenCL版本,本机显示:OpenCL1.1 CUDA 4.2.1  
        char *version = (char*)malloc(ext_size);  
        clGetPlatformInfo(platforms[i], CL_PLATFORM_VERSION,      
            ext_size, version, NULL);                 
        printf("Platform %d version: %s\n", i, version);  

        //这个只有两个值:full profile 和 embeded profile  
        char *profile = (char*)malloc(ext_size);  
        clGetPlatformInfo(platforms[i], CL_PLATFORM_PROFILE,      
            ext_size, profile, NULL);                 
        printf("Platform %d full profile or embeded profile?: %s\n", i, profile);  

        /* Look for ICD extension */     
        //如果支持ICD这一扩展功能的platform,输出显示,本机的Intel和Nvidia都支持这一扩展功能  
        if(strstr(ext_data, icd_ext) != NULL)   
            platform_index = i;  
        //std::cout<<"Platform_index = "<<platform_index<<std::endl;  
        printf("Platform_index is: %d\n", platform_index);  
        /* Display whether ICD extension is supported */  
        if(platform_index > -1)  
            printf("Platform %d supports the %s extension.\n",   
            platform_index, icd_ext);  


        //释放空间  
        free(ext_data);  
        free(name);  
        free(vendor);  
        free(version);  
        free(profile);  
    }  

    if(platform_index <= -1)  
        printf("No platforms support the %s extension.\n", icd_ext);  

    /* Deallocate resources */  
    free(platforms);  
    return 0;  
}   

编译和执行(Linux):

1) gcc opencl_hello.c -lOpenCL 

2) ./a.out

结果: 显示了intel平台和nvidia平台的信息

阅读更多
个人分类: opencl入门
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭