LSTM与GRU结构

转自https://www.cnblogs.com/taojake-ML/p/6272605.html,在此感谢原文博主

一、

RNN 的关键点之一就是他们可以用来连接先前的信息到当前的任务上,例如使用过去的视频段来推测对当前段的理解。如果 RNN 可以做到这个,他们就变得非常有用。但是真的可以么?答案是,还有很多依赖因素。
有时候,我们仅仅需要知道先前的信息来执行当前的任务。例如,我们有一个语言模型用来基于先前的词来预测下一个词。如果我们试着预测 “the clouds are in the sky” 最后的词,我们并不需要任何其他的上下文 —— 因此下一个词很显然就应该是 sky。在这样的场景中,相关的信息和预测的词位置之间的间隔是非常小的,RNN 可以学会使用先前的信息。


不太长的相关信息和位置间隔

但是同样会有一些更加复杂的场景。假设我们试着去预测“I grew up in France... I speak fluent French”最后的词。当前的信息建议下一个词可能是一种语言的名字,但是如果我们需要弄清楚是什么语言,我们是需要先前提到的离当前位置很远的 France 的上下文的。这说明相关信息和当前预测位置之间的间隔就肯定变得相当的大。
不幸的是,在这个间隔不断增大时,RNN 会丧失学习到连接如此远的信息的能力。


相当长的相关信息和位置间隔

在理论上,RNN 绝对可以处理这样的 长期依赖 问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 肯定不能够成功学习到这些知识。Bengio, et al. (1994)等人对该问题进行了深入的研究,他们发现一些使训练 RNN 变得非常困难的相当根本的原因。
然而,幸运的是,LSTM 并没有这个问题!

LSTM 网络

Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息。LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。
LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!
所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。


标准 RNN 中的重复模块包含单一的层


LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。


LSTM 中的重复模块包含四个交互的层


不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。


LSTM 中的图标


在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

LSTM 的核心思想

LSTM 的关键就是细胞状态,水平线在图上方贯穿运行。
细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。


Paste_Image.png

LSTM 有通过精心设计的称作为“门”的结构来去除或者增加信息到细胞状态的能力。门是一种让信息选择式通过的方法。他们包含一个 sigmoid 神经网络层和一个 pointwise 乘法操作。


Paste_Image.png


Sigmoid 层输出 0 到 1 之间的数值,描述每个部分有多少量可以通过。0 代表“不许任何量通过”,1 就指“允许任意量通过”!

LSTM 拥有三个门,来保护和控制细胞状态。

逐步理解 LSTM

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取 h_{t-1} 和 x_t,输出一个在 0 到 1 之间的数值给每个在细胞状态 C_{t-1} 中的数字。1 表示“完全保留”,0 表示“完全舍弃”。
让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。


决定丢弃信息


下一步是确定什么样的新信息被存放在细胞状态中。这里包含两个部分。第一,sigmoid 层称 “输入门层” 决定什么值我们将要更新。然后,一个 tanh 层创建一个新的候选值向量,\tilde{C}_t,会被加入到状态中。下一步,我们会讲这两个信息来产生对状态的更新。
在我们语言模型的例子中,我们希望增加新的主语的性别到细胞状态中,来替代旧的需要忘记的主语。


确定更新的信息

现在是更新旧细胞状态的时间了,C_{t-1} 更新为 C_t。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。
我们把旧状态与 f_t 相乘,丢弃掉我们确定需要丢弃的信息。接着加上 i_t * \tilde{C}_t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。
在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的性别信息并添加新的信息的地方。


更新细胞状态

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。
在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。


输出信息

LSTM 的变体

我们到目前为止都还在介绍正常的 LSTM。但是不是所有的 LSTM 都长成一个样子的。实际上,几乎所有包含 LSTM 的论文都采用了微小的变体。差异非常小,但是也值得拿出来讲一下。
其中一个流形的 LSTM 变体,就是由 Gers & Schmidhuber (2000) 提出的,增加了 “peephole connection”。是说,我们让 门层 也会接受细胞状态的输入。


peephole 连接

上面的图例中,我们增加了 peephole 到每个门上,但是许多论文会加入部分的 peephole 而非所有都加。

另一个变体是通过使用 coupled 忘记和输入门。不同于之前是分开确定什么忘记和需要添加什么新的信息,这里是一同做出决定。我们仅仅会当我们将要输入在当前位置时忘记。我们仅仅输入新的值到那些我们已经忘记旧的信息的那些状态 。


coupled 忘记门和输入门


另一个改动较大的变体是 Gated Recurrent Unit (GRU),这是由 Cho, et al. (2014) 提出。它将忘记门和输入门合成了一个单一的 更新门。同样还混合了细胞状态和隐藏状态,和其他一些改动。最终的模型比标准的 LSTM 模型要简单,也是非常流行的变体。


GRU


这里只是部分流行的 LSTM 变体。当然还有很多其他的,如Yao, et al. (2015) 提出的 Depth Gated RNN。还有用一些完全不同的观点来解决长期依赖的问题,如Koutnik, et al. (2014) 提出的 Clockwork RNN。
要问哪个变体是最好的?其中的差异性真的重要吗?Greff, et al. (2015) 给出了流行变体的比较,结论是他们基本上是一样的。Jozefowicz, et al. (2015) 则在超过 1 万种 RNN 架构上进行了测试,发现一些架构在某些任务上也取得了比 LSTM 更好的结果。


Jozefowicz等人论文截图

结论

刚开始,我提到通过 RNN 得到重要的结果。本质上所有这些都可以使用 LSTM 完成。对于大多数任务确实展示了更好的性能!
由于 LSTM 一般是通过一系列的方程表示的,使得 LSTM 有一点令人费解。然而本文中一步一步地解释让这种困惑消除了不少。
LSTM 是我们在 RNN 中获得的重要成功。很自然地,我们也会考虑:哪里会有更加重大的突破呢?在研究人员间普遍的观点是:“Yes! 下一步已经有了——那就是注意力!” 这个想法是让 RNN 的每一步都从更加大的信息集中挑选信息。例如,如果你使用 RNN 来产生一个图片的描述,可能会选择图片的一个部分,根据这部分信息来产生输出的词。实际上,Xu, et al.(2015)已经这么做了——如果你希望深入探索注意力可能这就是一个有趣的起点!还有一些使用注意力的相当振奋人心的研究成果,看起来有更多的东西亟待探索……
注意力也不是 RNN 研究领域中唯一的发展方向。例如,Kalchbrenner, et al. (2015) 提出的 Grid LSTM 看起来也是很有前途。使用生成模型的 RNN,诸如Gregor, et al. (2015) Chung, et al. (2015) 和 Bayer & Osendorfer (2015) 提出的模型同样很有趣。在过去几年中,RNN 的研究已经相当的燃,而研究成果当然也会更加丰富!

二、

1.rnn结构的BPTT学习算法存在的问题

先看一下比较典型的BPTT一个展开的结构,如下图,这里只考虑了部分图,因为其他部分不是这里要讨论的内容。

对于t时刻的误差信号计算如下:

这样权值的更新方式如下:

上面的公式在BPTT中是非常常见的了,那么如果这个误差信号一直往过去传呢,假设任意两个节点u, v他们的关系是下面这样的:

那么误差传递信号的关系可以写成如下的递归式:

n表示图中一层神经元的个数,这个递归式的大概含义不难理解,要求t-q时刻误差信号对t时刻误差信号的偏导,就先求出t-q+1时刻对t时刻的,然后把求出来的结果传到t-q时刻,递归停止条件是q = 1时,就是刚开始写的那部分计算公式了。将上面的递归式展开后可以得到:

论文里面说的是可以通过归纳来证明,我没仔细推敲这里了,把里面连乘展开看容易明白一点:

整个结果式对T求和的次数是n^(q-1), 即T有n^(q-1)项,那么下面看问题出在哪儿。

如果|T| > 1, 误差就会随着q的增大而呈指数增长,那么网络的参数更新会引起非常大的震荡。

如果|T| < 1, 误差就会消失,导致学习无效,一般激活函数用simoid函数,它的倒数最大值是0.25, 权值最大值要小于4才能保证不会小于1。

误差呈指数增长的现象比较少,误差消失在BPTT中很常见。在原论文中还有更详细的数学分析,但是了解到此个人觉的已经足够理解问题所在了。

 

 

2.最初的LSTM结构

为了克服误差消失的问题,需要做一些限制,先假设仅仅只有一个神经元与自己连接,简图如下:

根据上面的,t时刻的误差信号计算如下:

为了使误差不产生变化,可以强制令下式为1:

根据这个式子,可以得到:

这表示激活函数是线性的,常常的令fj(x) = x, wjj = 1.0,这样就获得常数误差流了,也叫做CEC。

但是光是这样是不行的,因为存在输入输出处权值更新的冲突(这里原论文里面的解释我不是很明白),所以加上了两道控制门,分别是input gate, output gate,来解决这个矛盾,图如下:

 

图中增加了两个控制门,所谓控制的意思就是计算cec的输入之前,乘以input gate的输出,计算cec的输出时,将其结果乘以output gate的输出,整个方框叫做block, 中间的小圆圈是CEC, 里面是一条y = x的直线表示该神经元的激活函数是线性的,自连接的权重为1.0

 

3.增加forget gate

 
最初lstm结构的一个缺点就是cec的状态值可能会一直增大下去,增加forget gate后,可以对cec的状态进行控制,它的结构如下图:
 
这里的相当于自连接权重不再是1.0,而是一个动态的值,这个动态值是forget gate的输出值,它可以控制cec的状态值,在必要时使之为0,即忘记作用,为1时和原来的结构一样。
 

4.增加Peephole的LSTM结构

 
上面增加遗忘门一个缺点是当前CEC的状态不能影响到input gate, forget gate在下一时刻的输出,所以增加了Peephole connections。结构如下:
这里的gate的输入部分就多加了一个来源了,forget gate, input gate的输入来源增加了cec前一时刻的输出,output gate的输入来源增加了cec当前时刻的输出,另外计算的顺序也必须保证如下:
  1. input gate, forget gate的输入输出
  2. cell的输入
  3. output gate的输入输出
  4. cell的输出(这里也是block的输出)
 

5.一个LSTM的FULL BPTT推导(用误差信号)

我记得当时看论文公式推导的时候很多地方比较难理解,最后随便谷歌了几下,找到一个写的不错的类似课件的PDF,但是已经不知道出处了,很容易就看懂LSTM的前向计算,误差反传更新了。把其中关于LSTM的部分放上来,首先网络的完整结构图如下:
 
这个结构也是rwthlm源码包中LSTM的结构,下面看一下公式的记号:
  • wij表示从神经元i到j的连接权重(注意这和很多论文的表示是反着的)
  • 神经元的输入用a表示,输出用b表示
  • 下标 ι, φ 和 ω分别表示input gate, forget gate,output gate 
  • c下标表示cell,从cell到 input, forget和output gate的peephole权重分别记做  wcι , wcφ and wcω
  • Sc表示cell c的状态
  • 控制门的激活函数用f表示,g,h分别表示cell的输入输出激活函数
  • I表示输入层的神经元的个数,K是输出层的神经元个数,H是隐层cell的个数
前向的计算:
误差反传更新:
 
 
 
此外,还有GRU结构同样是解决RNN的缺点,这里将LSTM和GRU进行对比。
LSTM与GRU:

这里写图片描述

1) LSTM:

这里写图片描述

2)GRU:

这里写图片描述

3)概括的来说,LSTM和GRU都能通过各种Gate将重要特征保留,保证其在long-term 传播的时候也不会被丢失;还有一个不太好理解,作用就是有利于BP的时候不容易vanishing:

这里写图片描述

3.实验结果:

实验用了三个unit,传统的tanh,以及LSTM和GRU:

这里写图片描述

可以发现LSTM和GRU的差别并不大,但是都比tanh要明显好很多,所以在选择LSTM或者GRU的时候还要看具体的task data是什么

不过在收敛时间和需要的epoch上,GRU应该要更胜一筹:

这里写图片描述

展开阅读全文

没有更多推荐了,返回首页