欧拉筛
【算法/数论】欧拉筛法详解:过程详述、正确性证明、复杂度证明_seh_sjlj的博客-CSDN博客
筛法思路:找到一个素数后,将它的倍数标记为合数,也就是把他的倍数给筛掉。如果一个数没有被前面的数给筛掉,那就是素数。
欧拉筛的改进点在于通过找到最小的能整除的质因数然后break掉来使每个数不会被多次遍历。
存留疑点(已解决):看似无法保证每个合数都被筛掉?
在里面的for循环中 a =p*d p是a的最小质因数,所以b的最小质因数必不小于p(通过反证法,如果b的最小质因数不小于p,那么就不该是这个p 而是下一个p)
if(i % prime[j] == 0) break;
bool isprime[MAXN]; // isprime[i]表示i是不是素数 注意c语言老版本不支持bool数组 请用int 0 1替换
int prime[MAXN]; // 现在已经筛出的素数列表
int n; // 上限,即筛出<=n的素数
int cnt; // 已经筛出的素数个数
void euler()
{
memset(isprime, true, sizeof(isprime)); // 先全部标记为素数
isprime[1] = false; // 1不是素数
for(int i = 2; i <= n; ++i) // i从2循环到n(外层循环)
{
if(isprime[i]) prime[++cnt] = i;
// 如果i没有被前面的数筛掉,则i是素数
for(int j = 1; j <= cnt && i * prime[j] <= n; ++j)
// 筛掉i的素数倍,即i的prime[j]倍
// j循环枚举现在已经筛出的素数(内层循环)
{
isprime[i * prime[j]] = false;
// 倍数标记为合数,也就是i用prime[j]把i * prime[j]筛掉了
if(i % prime[j] == 0) break;
// 最神奇的一句话,如果i整除prime[j],退出循环
// 这样可以保证线性的时间复杂度
}
}
}
个人总结1.创建bool表并全格式化为true(都是):存储2到n中的数是否为素数;
创建数组表:存储被之后检验过是素数的数
创建计数器:记录下已存储的质数个数
2.外层循环2-n:先确认有没有当前的数有没有被确认是和数,没有则存入数组表。
3.内层循环2-n (停止条件是质数表检测完了和“已确认在质数表中的质数”和“当前循环到的数i”相乘出来的数大于了我们要求的范围) :用于“已确认在质数表中的质数”和“当前循环到的数i”相乘来找出并标记在“当前循环到的数i”之后存在的质数,之后通过找到最小的能整除的质因数然后break掉来使每个数不会被多次遍历。