【LeetCode - 549】二叉树中最长的连续序列

本文介绍了一种算法,用于寻找二叉树中包含当前节点的最长连续递增或递减序列路径。通过为每个节点添加inc和dcr属性,分别记录最长连续递增和递减序列长度,最终找到最大序列路径。

1、题目描述

在这里插入图片描述

2、解题思路

  给每一个节点搭配两个属性:inc 和 dcr 。

  其中,inc 表示截至到当前节点的最长连续递增序列的长度,dcr 表示截至到当前节点的最长连续递减序列的长度。

  那么,包含当前节点的连续序列路径的长度就是 inc + dec - 1。

  接着找到 inc + dec - 1 值最大的节点,返回这个值即可。

3、解题代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    int maxval = 0;

    public int longestConsecutive(TreeNode root) {
        longestPath(root);
        return maxval;
    }

    public int[] longestPath(TreeNode root) {
        if (root == null) {
            return new int[]{0, 0};
        }
        int inr = 1, dcr = 1;
        if (root.left != null) {
            int[] l = longestPath(root.left);
            if (root.val == root.left.val + 1) {
                dcr = l[1] + 1;
            } else if (root.val == root.left.val - 1) {
                inr = l[0] + 1;
            }
        }
        if (root.right != null) {
            int[] r = longestPath(root.right);
            if (root.val == root.right.val + 1) {
                dcr = Math.max(dcr, r[1] + 1);
            } else if (root.val == root.right.val - 1) {
                inr = Math.max(inr, r[0] + 1);
            }
        }
        maxval = Math.max(maxval, dcr + inr - 1);
        return new int[]{inr, dcr};
    }
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值