使用Streamlit部署ONNX模型
环境准备
- 安装ONNX及ONNXRuntime
ONNX是表示模型的一种格式, 它提供了对模型的一种中间表示。
ONNX Runtime可以对ONNX模型进行推理推理。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnxruntime onnx
- 安装Streamlit
Streamlit是一个开源的Python库,用于快速创建数据应用的Web界面。
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit
Streamlit部署ONNX模型
使用Streamlit创建一个用户界面,用户可以通过上传图片或者视频进行目标检测或者分类。
代码
主要代码展示
# 模型选择,根据不同任务选择检测模型还是分类模型
st.sidebar.title("Select Model")
model_name = st.sidebar.selectbox("Model", ["YOLO", "ResNet18"])
# ···
# 检测模型
yolo = YOLOv11_ONNX("weights/yolov12n.onnx")
detections = yolo.process_img(img)
# 分类模型
resnet = ResNet18ONNXInference("weights/resnet18-v2-7.onnx")
class_name, score = resnet.infer(img)
效果展示
计算机视觉、图像处理、毕业辅导、作业帮助,有需要可以私信我



被折叠的 条评论
为什么被折叠?



