【模型部署】

环境准备

  1. 安装ONNX及ONNXRuntime

ONNX是表示模型的一种格式, 它提供了对模型的一种中间表示。
ONNX Runtime可以对ONNX模型进行推理推理。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnxruntime onnx
  1. 安装Streamlit

Streamlit是一个开源的Python库,用于快速创建数据应用的Web界面。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple streamlit

Streamlit部署ONNX模型

使用Streamlit创建一个用户界面,用户可以通过上传图片或者视频进行目标检测或者分类。

代码

主要代码展示

# 模型选择,根据不同任务选择检测模型还是分类模型
st.sidebar.title("Select Model")
model_name = st.sidebar.selectbox("Model", ["YOLO", "ResNet18"])
# ···
# 检测模型
yolo = YOLOv11_ONNX("weights/yolov12n.onnx")
detections = yolo.process_img(img)
# 分类模型
resnet = ResNet18ONNXInference("weights/resnet18-v2-7.onnx")
class_name, score = resnet.infer(img)

效果展示

目标检测示例
图像分类示例
项目链接,如果有帮助,点个star,感谢🙏

计算机视觉、图像处理、毕业辅导、作业帮助,有需要可以私信我

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值