机器学习基础
~
Linias
睡觉 吃饭 学习
-
原创 吴恩达机器学习笔记--多变量线性回归
多维特征目前为止,我们探讨了单变量(特征)的回归模型,现在我们对房价模型增加更多的特征,如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x ,x ,...,x )。 多变量梯度下降与单变量线性回归类似,在多变量线性回归中,我们也构建一个代价函数,则这个代价函数是所有建模误差的平方和,即:其中:我们的目标和单变量线性回归问题中一样,是要找...2018-09-05 02:05:47221
0
-
原创 吴恩达机器学习笔记--逻辑回归
逻辑回归(logistic regression)分类(Classification)分类问题举例:邮件:垃圾邮件/非垃圾邮件?在线交易:是否欺诈(是/否)?肿瘤:恶性/良性?以上问题可以称之为二分类问题,我们将因变量(dependant variable)可能属于的两个类分别称为负向类(negative class)和正向类(positive class),则因变量yϵ{0...2018-09-05 15:04:191863
1
-
原创 吴恩达机器学习笔记--正则化
机器学习:正则化 过拟合问题拟合问题举例-线性回归之房价问题:下图左中右分别是:欠拟合、合适的拟合、过拟合 什么是过拟合(Overfitting):如果我们有非常多的特征,那么所学的Hypothesis有可能对训练集拟合的非常好,但是对于新数据预测的很差。过拟合导致它无法泛化(应用到新样本的能力)到新的样本中,无法预测新的样本 拟合问题举例-逻辑回归:...2018-09-05 16:29:03197
0
-
原创 神经网络参数的反向传播算法
神经网络 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络层数,SI表示每层的neuron个数(Sl表示输出层神经元个数),SL代表最后一层中处理单元的个数。将神经网络的分类定义为两种情况:二类分类和多类分类,二类分类:SL=0,y=0or1表示哪一类;K类分类:SL=k,yi=1 表示分到第i类;(k>2) 我们回顾逻辑回...2018-09-06 17:13:572417
0
-
原创 应用机器学习的建议
应用机器学习的建议 若在过程中,遇到了很大的预测误差该怎么办 **改进算法的几种办法: 获得更多的训练实例——通常是有效的,但代价较大,下面的方法也可能有效,可考虑先采用下面的几种方 ---解决高方差 尝试减少特征的数量(可以仔细挑选一些来防止过拟合) --解决高方差 ...2018-09-07 14:45:24108
0
-
原创 机器学习系统设计
机器学习系统设计 以一个垃圾邮件分类器算法为例进行讨论。为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量xx。我们可以选择一个由100个最常出现在垃圾邮件中的词所构成的列表,根据这些词是否有在邮件中出现,来获得我们的特征向量(出现为1,不出现为0),尺寸为100×1。 误差分析**构建一个学习算法的推荐方法为:1. 从一个简单的能快速实现的算法...2018-09-07 16:40:12587
0
-
原创 吴恩达--支持向量机
支持向量机(Support Vector Machines)优化目标支持向量机(Support Vector Machine)。与逻辑回归和神经网络相比,支持向量机,或者简称SVM,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式。因此,在接下来的视频中,我会探讨这一算法。在稍后的课程中,我也会对监督学习算法进行简要的总结。当然,仅仅是作简要描述。但对于支持向量机,鉴于该算法的强...2018-09-08 09:55:34940
0
-
原创 吴恩达--无监督学习
聚类(Clustering) 无监督学习: 什么是非监督学习呢?在课程的一开始,我曾简单的介绍过非监督学习,然而,我们还是有必要将其与监督学习做一下比较。在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我...2018-09-08 14:40:2028127
1
-
原创 吴恩达--异常检测
异常检测 模型p(x) 为我们其属于一组数据的可能性通过p(x)<ε检测非正常用户。 异常检测主要用来识别欺骗。例如在线采集而来的有关用户的数据,一个特征向量中可能会包含如:用户多久登录一次,访...2018-09-09 23:08:241420
0
-
原创 吴恩达--降维
降维(Dimensionality Reduction)数据压缩 我想开始谈论第二种类型的无监督学习问题,称为降维。有几个不同的的原因使你可能想要做降维。一是数据压缩,后面我们会看了一些视频后,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。但首先,让我们谈论降维是什么。作为一种生动的例子,我们收集的数据集,有许多,许多特征,我绘...2018-09-09 23:17:201019
0