题目描述:
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树
平衡二叉树(Balanced Binary Tree),具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
输入:
{1,2,3,4,5,6,7}
输出:
true
解法1:暴力法
class Solution {
public:
//判断是否是平衡二叉树
//遍历每一个节点,借助每一个获得树深度的递归函数,根据该节点的左右子树的高度来判断该节点的左右子树的高度差是否平衡
//然后递归地对左右子树进行判断
//暴力法
int maxDepth(TreeNode* node){
if(node==nullptr) return 0;
return 1+max(maxDepth(node->left),maxDepth(node->right));
}
bool IsBalanced_Solution(TreeNode* pRoot) {
if(pRoot==nullptr)return true;//遍历根节点地左子树和右子树,保证根节点地左右子树高度差小于1
return abs(maxDepth(pRoot->left)-maxDepth(pRoot->right))<=1&&IsBalanced_Solution(pRoot->left)&&IsBalanced_Solution(pRoot->right);
}
//return 后面不需要加两个&&来递归他左子树和右子树. 这样想, 有一个函数得到了他的深度, 那么只要根的左子树和右子树深度不超过1就可以了. 后面判断的没有什么必要
};