流形学习

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_29462849/article/details/80737891

流形学习(manifold learning)是机器学习、模式识别中的一种方法,在维数约简方面具有广泛的应用。它的主要思想是将高维的数据映射到低维,使该低维的数据能够反映原高维数据的某些本质结构特征。流形学习的前提是有一种假设,即某些高维数据,实际是一种低维的流形结构嵌入在高维空间中。流形学习的目的是将其映射回低维空间中,揭示其本质。以下图为例,左边是一个三维数据的分布,右边是降低到二维后的结果。我们可以发现二维的数据更能直观地表示其流形结构。

这里写图片描述

通过流形学习来实现降维的方法有很多,其基本思想也类似:假设数据在高维具有某种结构特征,希望降到低维后,仍能保持该结构。

比较常见的有:
1. 局部改线嵌入(Local Linear Embedding, LLE),假设数据中每个点可以由其近邻的几个点重构出来。降到低维,使样本仍能保持原来的重构关系,且重构系数也一样。
2. 拉普拉斯特征映射(Laplacian Eigenmaps, LE),将数据映射到低维,且保持点之间的(相似度)距离关系。即在原空间中相距较远的点,投影到低维空间中,希望它们之间仍相距较远。反之亦然。
3. 局部保持投影(LPP)
4. 等距映射(Isomap)等等。
更多方法请见下图:

这里写图片描述

展开阅读全文

没有更多推荐了,返回首页