PCL点云处理
文章平均质量分 54
Tom Hardy
关注计算机视觉、机器学习、深度学习,公众号【3D视觉工坊】【计算机视觉工坊】
展开
-
基于点云方式的6D姿态识别
作者:Tom HardyDate:2020-2-26来源:基于点云方式的6D姿态识别前言除了对应点方式,还可以将点云将与整个形状对齐,获得6D姿态。通常,首先进行粗配准以提供初始对准,然后进行密集配准方法,如迭代最近点(ICP),以获得最终的6D姿态。针对点云方式,挑选了一些相关的paper,在这里做下基本思想分享。1、Go-ICP: A Globally Optimal Solut...原创 2020-02-27 15:20:39 · 2634 阅读 · 0 评论 -
3D点云分割算法汇总
作者:Tom HardyDate:2020-2-19来源:汇总|3D点云分割算法前言最近在arXiv和一些会议上看到了几篇3D点云分割paper,觉得还不错,在这里分享下基本思路。1、SceneEncoder: Scene-Aware Semantic Segmentation of Point Clouds with A Learnable Scene Descriptor除了局...原创 2020-02-19 14:21:26 · 5434 阅读 · 0 评论 -
汇总|基于3D点云的深度学习方法
作者:Tom HardyDate:2020-2-18来源:汇总|基于3D点云的深度学习方法本文参考:https://arxiv.org/pdf/1912.12033.pdf前言三维数据通常可以用不同的格式表示,包括深度图像、点云、网格和体积网格。点云表示作为一种常用的表示格式,在三维空间中保留了原始的几何信息,不需要任何离散化。因此,它是许多场景理解相关应用(如自动驾驶和机器人)的首...原创 2020-02-18 12:28:04 · 1914 阅读 · 0 评论 -
PCL中的点云ICP配准(附源代码和数据)
介绍给定两个来自不同坐标系的三维数据点集,找到两个点集空间的变换关系,使得两个点集能统一到同一坐标系统中,即配准过程。配准的目标是在全局坐标框架中找到单独获取的视图的相对位置和方向,使得它们之间的相交区域完全重叠。对于从不同视图(views)获取的每一组点云数据,需要一个能够将它们对齐在一起的单一点云模型,从而可以应用后续处理步骤,如分割和对象重构。这篇博文就基于PCL中的ICP算法,实现不同视...原创 2018-12-18 21:46:43 · 18131 阅读 · 26 评论 -
pcl学习之kd-tree
介绍通过雷达、激光扫描、立体摄像机等三维测量设备获取的点云数据,具有数据量大、分布不均匀等特点。作为三维领域中一个重要的数据来源,点云数据主要是表征目标表面的海量点的集合,并不具备传统实体网格数据的几何拓扑信息。所以点云数据处理中最为核心的问题就是建立离散点间的拓扑关系,实现基于邻域关系的快速查找。概念KD-Tree 是一棵二叉搜索树。与普通的二叉搜索树一样,它具有左儿子比父亲小,右儿子比父...转载 2018-12-18 11:19:36 · 371 阅读 · 0 评论 -
Ubuntu16.04安装编译pcl点云库
在ubuntu下安装pcl点云库时,网上给出的教程,大多是分了几个步骤,安装pcl和其依赖库,未免过于麻烦,其实有很简单的方法,一行就可以搞定。sudo apt-get install libpcl-dev这样,对应的依赖项和pcl库都被安装编译好了,然后使用pcl_viewer测试下吧!where options are: -bc r,g,b ...原创 2018-12-11 10:42:48 · 3113 阅读 · 0 评论 -
PCL中把点云拟合成曲面(附源代码)
源代码#include <pcl/point_types.h>#include <pcl/io/pcd_io.h>#include <pcl/kdtree/kdtree_flann.h>#include <pcl/features/normal_3d.h>#include <pcl/surface/gp3.h>#include...转载 2018-12-21 12:22:25 · 9235 阅读 · 6 评论 -
PCL中的点云分割算法
介绍点云分割算法是点云处理中非常重要的一部分内容,扫描出来的点云往往是整幅场景,没有办法对其直接处理,这个时候就需要一些点云分割算法。PCL是一个强大的库,已经帮我们封装好了许多分割算法,像平面模型、圆柱模型、立方体等一些规则模型的分割,和基于聚类方法的非规则模型的分割。下面来具体介绍下PCL中主要的点云分割算法。1、规则物体的模型分割这种分割算法主要针对规则物体,比如球、圆柱、平面、立...原创 2018-12-20 10:22:25 · 5536 阅读 · 0 评论 -
PCL计算点云的法线
源代码#include <pcl/io/io.h>#include <pcl/io/pcd_io.h>#include <pcl/features/integral_image_normal.h> //法线估计类头文件#include <pcl/visualization/cloud_viewer.h>#include <pcl/p...原创 2018-12-19 20:02:25 · 3535 阅读 · 6 评论 -
PCL点云参数估计算法之RANSAC和LMEDS
RANSAC算法RANSAC算法的输入是一组观测数据(往往含有较大的噪声或无效点),一个用于解释观测数据的参数化模型以及一些可信的参数。RANSAC通过反复选择数据中的一组随机子集来达成目标。被选取的子集被假设为局内点,并用下述方法进行验证:有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是...原创 2018-12-19 19:24:29 · 2231 阅读 · 0 评论 -
PCL中的关键点
NARF关键点是为了从深度图像中识别物体而提出的,关键点探测的重要一步是减少特征提取时的搜索空间,把重点放在重要的结构上,对NARF关键点提取过程有以下要求:提取的过程必须考虑边缘以及物体表面变化信息在内;关键点的位置必须稳定的可以被重复探测,即使换了不同的视角;关键点所在的位置必须有稳定的支持区域,可以计算描述子和进行唯一的估计法向量;为了满足上述要求,提出以下探测步骤来进行关键点提...转载 2018-12-19 18:02:23 · 605 阅读 · 0 评论 -
PCL对点云进行滤波处理并进行颜色可视化
介绍和图像滤波相似,点云的滤波处理非常重要。在获取点云数据时 ,由于设备和操作者经验环境因素带来的影响,被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中讲不可避免的出现一些噪声。在点云处理流程中滤波处理作为预处理的第一步,对后续的影响比较大,只有在滤波预处理中将噪声点 ,离群点,孔洞,数据压缩等按照后续处理定制,才能够更好的进行配准,特征提取,曲面重建,可视化等后续应用处理。源代码...原创 2018-12-19 17:03:56 · 3362 阅读 · 2 评论
分享