卷积神经网络中的参数计算

举例1:

  比如输入是一个32x32x3的图像,3表示RGB三通道,每个filter/kernel是5x5x3,一个卷积核产生一个feature map,下图中,有6个5x5x3的卷积核,故输出6个feature map(activation map),大小即为28x28x6。

 

      下图中,第二层到第三层,其中每个卷积核大小为5x5x6,这里的6就是28x28x6中的6,两者需要相同,即每个卷积核的“层数”需要与输入的“层数”一致。有几个卷积核,就输出几个feature map,下图中,与第二层作卷积的卷积核有10个,故输出的第三层有10个通道。

举例2:

  NxN大小的输入(暂时不考虑通道数),与FxF大小的卷积核(暂时不考虑个数)做卷积,那么输出大小为多大?计算公式为:(N - F) / stride + 1,其中stride为做卷积是相邻卷积核的距离。

 

举例3:

       输入为32x32x3,卷积核大小为5x5,总共有10个卷积核,做卷积的时候stride=1,pad=2,那么这一层总共含有多少参数?

       每个卷积核含有的参数个数为:5*5*3 + 1 = 76,其中1是偏置bias,由于有10个卷积核,故总参数为76*10=760。

总结:

其中,卷积核的数量K一般是2的整数次幂,这是因为计算方便(计算机计算2^n比较快)

 

 

 

 

 

参考:

斯坦福大学CS231N课程PPT

http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf

https://www.cnblogs.com/hejunlin1992/p/7624807.html

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最近的研究表明,稀疏表示(SR)可以很好地解决许多计算机视觉问题,并且其内核版本具有强大的分类能力。 在本文,我们解决了协作SR在半监督图像注释的应用,该方法可以增加标记图像的数量,以进一步用于训练图像分类器。 给定一组已标记(训练)的图像和一组未标记(测试)的图像,通常的SR方法(我们称为正向SR)用于用几个已标记的图像表示每个未标记的图像,然后根据这些标记的注释的注释。 但是,就我们所知,SR方法是在相反的方向上进行的,我们称向后SR用几个未标记的图像表示每个标记的图像,然后根据标记的图像的注释对任何未标记的图像进行注释,即未标记的图像由后向SR选择表示,到目前为止尚未解决。 在本文,我们探索后向SR可以对图像注释做出多少贡献,并可以对前向SR进行补充。 事实证明,只有在两个分类器相对独立的情况下,这种共同训练才是相互监督的半监督方法,然后采用该共同训练来证明两个SR在相反方向上的这种互补性。 最后,在内核空间对两个SR进行共同训练,建立了用于图像标注的协作式内核稀疏表示(Co-KSR)方法。 实验结果和分析表明,两个方向相反的KSR是互补的,并且Co-KSR相对于它们的任何一个都有明显的改善,其图像注释性能优于其他最新的半监督分类器(例如,转导支持向量机,局部和全局一致性,以及高斯场和谐波函数。 还使用非稀疏解决方案进行了比较实验,以表明稀疏度在两个相反方向上的图像表示协作起着重要作用。 本文扩展了SR在图像标注和检索的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值