机器学习笔记(一)

之前有学了机器学习实战的一些学习方法,最近开始看吴恩达的机器学习视频。自己记录的笔记如下:

第一课时 欢迎参加机器学习
人工智能------->机器学习---------->(1)程序代码不能手动编写(自动飞机驾驶、手写识别、NLP、CV)
(2)Medical records
(3)垃圾邮件分类、网页搜索、图像识别
(4)DataBase Mining
(5)学习人类

第二课时 什么是机器学习
机器学习概念: 从经验E中学习,为了解决任务T,学习过程中有性能度量P。从而根据性能度量P测定T,测定结果好坏因E提高而提高

概念举例:对于一个垃圾邮件分类学习,当我们对每封邮件进行标记时,即是经验E,任务T是要对邮件进行分类,P是正确分类邮件的概率。

各种不同类型的学习算法: (1)监督学习 supervised Learning
(2) 无监督学习 unsupervised Learning
(3) 强化学习 :输入state、action、rewards,输出policy
(4) 推荐算法
其中监督学习和无监督学习是最主要的

第三课时 监督学习
在监督学习中,我们给定一个数据集(包含正确答案),我们已经知道正确的输出,即已经知道输入和输出的关系。
监督学习又可分为回归和分类两大类,回归:预测连性的值,分类:预测一个离散值输出(0、1 或 多个离散的值)
算法的目的:得到更多正确答案

第四课时 无监督学习
无监督学习:数据集没有给出正确结果,我们并不需要知道有什么类型就可以从数据中提取到结构类型。

集群算法:通过数据变量中的关系使用集群算法可以提取出结构。例:基因分类
无集群算法:混音中分离出两种声音。

阅读更多

没有更多推荐了,返回首页