LTA_ALBlack
码龄9年
关注
提问 私信
  • 博客:120,570
    动态:365
    120,935
    总访问量
  • 81
    原创
  • 106,459
    排名
  • 271
    粉丝
  • 17
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2015-07-22
博客简介:

ALBlack的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,141
    当月
    7
个人成就
  • 获得157次点赞
  • 内容获得141次评论
  • 获得339次收藏
  • 代码片获得1,110次分享
创作历程
  • 2篇
    2024年
  • 7篇
    2023年
  • 72篇
    2022年
成就勋章
TA的专栏
  • 全波形反演 (FWI)
    4篇
  • 多标签
    6篇
  • 论文笔记
    5篇
  • 周报
    6篇
  • Java机器学习笔记
    15篇
  • 基础数据结构个人总结与Java学习
    48篇
  • 零散的想法与回答
    2篇
兴趣领域 设置
  • 微软技术
    c#.netasp.net
  • 服务器
    linux
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【Pytorch: Deepwave】GPU引领的正演与数值全波形反演 (FWI)

Deepwave是一个强大的使用有限差分法实现波动方程的正演和数值迭代反演的Python库.相比于一般的基于Matlab或者常规代码实现的正演或者数值迭代反演, Deepwave利用了Pytorch可调用GPU进行反向传递和求导的特点, 具备更强大的运算性能. 本文讲介绍Deepwave在声波正演与全波形反演中的简单应用例子.
原创
发布博客 2024.05.18 ·
2164 阅读 ·
40 点赞 ·
3 评论 ·
42 收藏

一般神经网络的微分与网络参数的初始化

上周讨论的前向和反向传播算法可以推广到任意深度神经网络的微分。对于一般的网络来说,可能无法逐层分割,但仍然可以用流图来表示。因此,反向传播是通过从输出神经元开始、向后传递信息并在输入处结束来执行的。更准确地说,给定从Rd到R的神经网络fx;θ映射图,假设总共有 K 个神经元,我们用x1​xd​和Nd1​NdK​标记输入。为了方便起见,神经元被标记为使得有向边总是从小索引到大索引。我们用wij​表示从神经元Ni​(或输入xi​)到神经元N。
原创
发布博客 2024.04.23 ·
1143 阅读 ·
29 点赞 ·
0 评论 ·
29 收藏

(论文调研) Multi-task的网络结构 在图像去噪问题中的应用

通过三篇文章分析多任务学习在去噪中的应用
原创
发布博客 2023.10.08 ·
535 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

从陆上低信噪比地震记录解决办法 到 走时层析反演中的折射层析 调研

折射层析成像法是通过对初至波进行射线追踪反演, 构建相应的速度层析成像图, 由此可以确定地质体中速度异常体的大小、位置、物性等参数
原创
发布博客 2023.09.30 ·
653 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

2023 7.31~8.6 周报 (多尺度的DL-FWI + 自然图像的风格迁移速度模型)

Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study》2021年底的论文, 发表于TGRS 2022. 其实也算比较新的一篇味道很纯粹的DL-FWI.本周阅读的论文是从多尺度 (multi-scale) 角度来训练DL-FWI. 在之前几个月刚接触DL-FWI的时候, 遇到过类似的设计思路. 除了模型这道主菜外, 这篇论文也加了一些味道奇特的作料
原创
发布博客 2023.08.02 ·
825 阅读 ·
2 点赞 ·
4 评论 ·
2 收藏

2023 7.24~7.30 周报 (VelocityGAN)

这周继续深入阅读一篇DL-FWI论文:《Data-Driven Seismic Waveform Inversion: A Study on the Robustness and Generalization》并且通过已有代码来分析实现细节. 最终复现.
原创
发布博客 2023.07.24 ·
504 阅读 ·
2 点赞 ·
3 评论 ·
2 收藏

2023 7.17~7.23 周报 (共源图像域中地震记录的RTM预训练模型) (8.3更新)

深度剖析论文《Deep-Learning Full-Waveform Inversion Using Seismic Migration Images》的方法体系, 构思复现的可能 (但是不一定真要去复现), 探索RTM在实际DL-FWI中的应用潜力.
原创
发布博客 2023.07.18 ·
405 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2023 7.10~7.16 周报 (RTM研究与正演的Python复现) (8.3更新)

1. Python复现简单的声波正演.2. 利用简单的声波正演手段实现RTM.3. Python复现包含复杂的边界吸收条件的弹性波正演.4. 试着看: 复杂的弹性波正演可否实现RTM.
原创
发布博客 2023.07.15 ·
1564 阅读 ·
4 点赞 ·
7 评论 ·
13 收藏

2023 7.3~7.9 周报 (论文初读)

深度学习的全波形反演(FWI)研究之路上的每周学习记录
原创
发布博客 2023.07.07 ·
540 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【多标签, 极限的多标签算法】评价指标梳理 (2023.1.15已重置)

这个文章本质是记录用, 当然也有些个人理解, 主要是是多标签和极限多标签有关的评价指标记录和学习, 如有问题欢迎指正!
原创
发布博客 2022.11.28 ·
1563 阅读 ·
6 点赞 ·
4 评论 ·
7 收藏

我的研究生论文的小总结 (以多标签方向为例)

研一学渣, 不久刚投了篇论文, 但是还在与审稿人做斗争. 不管怎么说, 先把当时写论文的一些经历和方法论文记录下来, 免得时间久了遗忘了.同时为第二篇论文留下些基石, 至少不会是从零开始的论文写作生活~
原创
发布博客 2022.11.03 ·
3843 阅读 ·
17 点赞 ·
0 评论 ·
49 收藏

极限多标签算法: FastXML 的解析

论文 Yashoteja Prabhu and Manik Varma, FastXML: A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning.的分析. 以及这篇论文的源码的一些关键结构的分析. 涉及多标记与极限多标签的自学思考内容
原创
发布博客 2022.10.31 ·
1285 阅读 ·
5 点赞 ·
4 评论 ·
3 收藏

教你用Pytorch搭建一个自己的简单的BP神经网络( 以iris数据集为例 )

以iris数据为例教搭建了一个简单的BP神经网络, 并且介绍了部分代码的含义, 进行了基本的测试. 最后, 博主将结果同曾经没有用轮子写的BP网络代码的结构进行了横向比对, 体现出Pytorch编程实现神经网络的快捷与便利..........
原创
发布博客 2022.07.03 ·
7188 阅读 ·
5 点赞 ·
0 评论 ·
37 收藏

论文学习记录随笔 多标签之LIFT

原文: Zhang, M.-L., & Wu, L. (2015). LIFT: Multi-label learning with label-specific features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 107–120. 本文主要是我对于初读LIFT的一些自己的笔记与感悟
原创
发布博客 2022.06.29 ·
1021 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

论文学习记录随笔 多标签之LSML

原文: Huang, J., Qin, F., Zheng, X., Cheng, Z.-K., Yuan, Z.-X., Zhang, W.-G., & Huang, Q.-M. (2019). Improving multi-label classification with missing labels by learning label-specific features. Information Sciences, 492, 124–146. 本文主要是对这个论文进行初步阅读的感受和观点....
原创
发布博客 2022.06.27 ·
4079 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

论文学习记录随笔 多标签之GLOCAL

原文: Yue Zhu, James T. Kwok, Zhi-Hua Zhou, Multi-Label Learning with Global and Local Label Correlation, IEEE Transactions on Knowledge and Data Engineering, 2018 (30), 1081–1094. 记录下读论文的一些体会
原创
发布博客 2022.06.26 ·
1024 阅读 ·
0 点赞 ·
3 评论 ·
4 收藏

多标签算法:MASP 的理论与Python代码分析

本篇文章是基于导师与师姐发布的论文: Xue-Yang Min, Kun Qian, Ben-Wen Zhang, Guojie Song, and Fan Min, Multi-label active learning through serial-parallel neural networks, Knowledge-Based Systems (2022) 相关论文内容可以自行查看, 本文也是主要对于文章算法进行学习和分析, 最后对代码进行学习与自我理解学习.........
原创
发布博客 2022.06.17 ·
2672 阅读 ·
3 点赞 ·
5 评论 ·
6 收藏

基于Java机器学习自学笔记(第81-87天:CNN卷积神经网络的入门到全代码编写)

本文加上代码一共6万多字, 讲述了CNN的基本概念与实现原理, 并且分析了它的学习的逻辑, 做数学推导, 得到一些CNN的学习公式. 最后通过原理设计了完整了CNN代码
原创
发布博客 2022.06.07 ·
2699 阅读 ·
7 点赞 ·
4 评论 ·
37 收藏

基于 Java 机器学习自学笔记 (第75-76天:通用化BP神经网络: 单层神经网络封装与总体组合)

注意:本篇为50天后的Java自学笔记扩充,内容不再是基础数据结构内容而是机器学习中的各种经典算法。这部分博客更侧重于笔记以方便自己的理解,自我知识的输出明显减少,若有错误欢迎指正!
原创
发布博客 2022.05.30 ·
357 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多