onnxruntime安装

在安装onnxruntime时,如果直接运行“pip install onnxruntime-gpu”安装的是最新版的onnxruntime-gpu,且对应的是的(CUDA 12.x)。这样很有可能导致CUDA版本不对应导致GPU用不了。

CUP版安装

https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ onnxruntime

GPU版安装(CUDA 12.x)

对应的是onnxruntime-gpu-1.19.2

pip install --pre --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ORT-Nightly/pypi/simple/ onnxruntime-gpu

GPU版安装(CUDA 11.x)

对应的是onnxruntime-gpu-1.19.2

pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-11/pypi/simple/

参考官网链接:https://onnxruntime.ai/docs/install/

### 如何安装ONNX Runtime #### 通过pip安装ONNX Runtime 对于大多数用户而言,最简单的方法是利用`pip`来安装ONNX Runtime。这适用于多种操作系统环境下的Python开发人员。命令如下所示: ```bash pip install onnxruntime ``` 此方法适合于不需要特定硬件加速(如GPU支持)的一般用途[^1]。 #### 安装带有CUDA扩展的预构建二进制包 为了获得更好的性能表现,特别是当目标平台具备NVIDIA GPU时,可以选择安装预先编译好的包含CUDA执行提供者(EP)版本的ONNX Runtime。这些预构建的二进制文件针对不同的编程语言接口进行了优化,并且能够充分利用GPU资源加快计算速度。详情可查阅官方文档中的安装指南[^2]。 #### 在Raspberry Pi上安装ONNX Runtime 对于运行ARM架构处理器的设备,比如Raspberry Pi,尤其是采用armv7l指令集的32位系统来说,由于官方并未直接提供相应的预编译版本,因此可能需要自行编译或寻找社区贡献者的适配版。一位开发者分享了其在树莓派上的安装经验,指出虽然遇到了一些挑战,但最终实现了成功的部署。具体步骤可以参考该作者的文章了解详细的安装流程[^3]。 #### 编译源码以适应特殊需求 如果遇到不兼容的情况或是希望定制化配置,则可以从源代码开始构建ONNX Runtime。需要注意的是,在某些情况下可能会碰到编译错误,例如使用非推荐的编译工具链可能导致未知类型的定义问题。此时应当遵循官方建议的选择合适的编译器来进行操作[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值