戴璞微的博客

简单点!做事的动机简单点

马尔可夫链

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
练习题
在英国,工党成员的第二代加入工党的概率为 0.5,加入保守党的概率为 0.4, 加入自由党的概率为 0.1。而保守党成员的第二代加入保守党的概率为 0.7,加入工党的 概率为 0.2,加入自由党的概率为 0.1。而自由党成员的第二代加入保守党的概率为 0.2, 加入工党的概率为 0.4,加入自由党的概率为 0.4。求自由党成员的第三代加入工党的概 率是多少?在经过较长的时间后,各党成员的后代加入各党派的概率分布是否具有稳定 性?

# -*- coding: utf-8 -*-
"""
Created on Thu Jan 12 10:42:13 2017

@author: DaiPuWei
"""
"""
    这是练习题一: 在英国,工党成员的第二代加入工党的概率为 0.5,加入保守党的概率为 
    0.4, 加入自由党的概率为 0.1。而保守党成员的第二代加入保守党的概率为 0.7,加入
    工党的 概率为 0.2,加入自由党的概率为 0.1。而自由党成员的第二代加入保守党的概率
    为 0.2, 加入工党的概率为 0.4,加入自由党的概率为 0.4。求自由党成员的第三代加入
    工党的概 率是多少?在经过较长的时间后,各党成员的后代加入各党派的概率分布是否具
    有稳定性? 
"""

import pandas as pd
import numpy as np

def run_main():
    """
        这是主函数
    """

    #党派名称
    party_name = ['工人党','保守党','自由党']

    #党派下一代的转移矩阵
    p = np.array([0.5,0.4,0.1,0.7,0.2,0.1,0.2,0.4,0.4]).reshape((3,3))
    party_transition_matrix = pd.DataFrame(p,index = party_name,columns = party_name)

    #第一次概率分布
    probility = [0.,0.,0.]
    sumall = sum(p)    
    for i in range(3):
        probility[i] = sumall[i]/sum(sumall)
    first_probility = pd.Series(probility,index = party_name)

    #自由党成员第三代计入工人党的概率
    tmp = first_probility * party_transition_matrix
    print('自由党成员第三代计入工人党的概率为:%f' %tmp['工人党']['自由党'])    

    #各党派成员的后代假如各党派的概率分布
    a,b = np.linalg.eig(party_transition_matrix)
    finally_probility = []
    for i in range(len(b)):s
        if all(b[i]>0):
            finally_probility = b[i]
            break
    finally_probility = finally_probility / sum(finally_probility)
    Finally_probility = pd.Series(finally_probility,index = party_name)
    print('各党派成员的后代假如各党派的概率分布如下:')
    print(Finally_probility)


if __name__ == '__main__':
    run_main()

这里写图片描述

阅读更多
版权声明:本文为博主原创文章,若需转载,请注明http://blog.csdn.net/qq_30091945 https://blog.csdn.net/qq_30091945/article/details/54376840
个人分类: 数学建模
所属专栏: 数学建模专栏
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭