华为数据之道第四部分导读 随着以算法、算力和数据为基础的人工智能的发展和广泛应用,我们可以认为出现了第四个世界——“机器认知世界”,即基于大量数据,各种人工智能“机器”按照各自的算法对映射到数字世界中的事物进行认知,其认知结论会直接影响人类的决策和行动,如流行的购物网站的智能推荐、汽车自动驾驶的智能判断、股票交易员数据处理分析的智能助手等。第四部分为第10章。基于对华为公司数字化转型的解读,我们建立了数据综合治理体系,发布了信息架构,构建了数据湖、数据底座,打造了数据感知、安全合规能力,提升了数据质量。
华为数据之道第三部分导读 华为数据质量指“数据满足应用的可信程度”,从以下六个维度对数据质量进行描述。1)完整性:指数据在创建、传递过程中无缺失和遗漏,包括实体完整、属性完整、记录完整和字段值完整四个方面。完整性是数据质量最基础的一项,例如员工工号不可为空。2)及时性:指及时记录和传递相关数据,满足业务对信息获取的时间要求。数据交付要及时,抽取要及时,展现要及时。数据交付时间过长可能导致分析结论失去参考意义。3)准确性:指真实、准确地记录原始数据,无虚假数据及信息。数据要准确反映其所建模的“真实世界”实体。
华为数据之道第二部分导读 数据服务是基于数据分发、发布的框架,将数据作为一种服务产品来提供,以满足客户的实时数据需求,它能复用并符合企业和工业标准,兼顾数据共享和安全。1)分析数据服务需求:通过数据需求调研与需求交接,判断数据服务类型(面向系统或面向消费)、数据内容(指标/维度/范围/报表项)、数据源与时效性要求。2)识别可重用性:结合数据需求分析,通过数据服务中心匹配已有的数据服务,判断以哪种方式(新建服务、直接复用、服务变更)满足业务需求。对于已有数据服务,必须使用服务化方式满足需求,减少数据“搬家”。3。
华为数据之道第一部分导读 目录导读第一部分序第1章 数据驱动的企业数字化转型非数字原生企业的数字化转型挑战业态特征:产业链条长、多业态并存运营环境:数据交互和共享风险高IT建设过程:数据复杂、历史包袱重数据质量:数据可信和一致化的要求程度高华为数字化转型与数据治理华为数字化转型整体目标华为数字化转型蓝图及对数据治理的要求华为数据治理实践华为数据治理历程1. 第一阶段:2007~2016年2. 第二阶段:2017年至今华为数据工作的愿景与目标华为数据工作建设的整体