C/C++ Levenberg–Marquardt算法详解及源码

Levenberg-Marquardt算法是解决非线性最小二乘问题的优化方法,结合Gauss-Newton与梯度下降,具有快速收敛和鲁棒性。它通过迭代更新参数,计算雅可比矩阵和Hessian矩阵近似值来最小化目标函数残差。算法在曲线拟合、参数估计等领域广泛应用,但也面临参数调节难度和局部最优解问题。文章提供了C语言实现示例,并提示注意初始值选择、迭代停止条件和调节因子选取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Levenberg-Marquardt算法是一种非线性最小二乘问题(Nonlinear Least Squares Problem)的优化算法。它结合了Gauss-Newton算法和梯度下降算法,能够更快地收敛到最优解。

算法的基本思想是通过迭代更新参数,将目标函数的残差最小化。在每一次迭代中,通过计算雅可比矩阵(Jacobian Matrix)来近似目标函数的Hessian矩阵,然后根据当前参数和雅可比矩阵的估计值来更新参数。具体的更新步骤如下:

  1. 初始化参数向量。
  2. 计算目标函数的残差。
  3. 计算雅可比矩阵。
  4. 计算Hessian矩阵的近似值。
  5. 根据当前参数和雅可比矩阵的估计值来更新参数。
  6. 重复步骤2-5,直到达到收敛条件。

Levenberg-Marquardt算法的优点包括:

  1. 收敛速度快:相对于梯度下降算法,Levenberg-Marquardt算法通常能够更快地收敛到最优解。
  2. 鲁棒性强:算法对初始值的选择不敏感,能够处理多种类型的非线性问题。
  3. 非线性问题广泛适用:Levenberg-Marquardt算法可用于解决各种非线性最小二乘问题,如曲线拟合、参数估计等。

然而,Levenberg-Marquardt算法也存在一些缺点:

  1. 参数调节困难ÿ
LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。 LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量 p 在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快等优点。LM算法属于一种“信赖域法”——所谓的信赖域法,此处稍微解释一下:在最优化算法中,都是要求一个函数的极小值,每一步迭代中,都要求目标函数值是下降的,而信赖域法,顾名思义,就是从初始点开始,先假设一个可以信赖的最大位移 s ,然后在以当前点为中心,以 s 为半径的区域内,通过寻找目标函数的一个近似函数(二次的)的最优点,来求解得到真正的位移。在得到了位移之后,再计算目标函数值,如果其使目标函数值的下降满足了一定条件,那么就说明这个位移是可靠的,则继续按此规则迭代计算下去;如果其不能使目标函数值的下降满足一定的条件,则应减小信赖域的范围,再重新求解。 事实上,你从所有可以找到的资料里看到的LM算法的说明,都可以找到类似于“如果目标函数值增大,则调整某系数再继续求解;如果目标函数值减小,则调整某系数再继续求解”的迭代过程,这种过程与上面所说的信赖域法是非常相似的,所以说LM算法是一种信赖域法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值