从零到一建设数据中台(七)- 数据服务开发

一、数据开发流程
将业务数据汇聚到数据仓库中进行数据清洗、数据建模、算法开发、数据质量校验、最终将数据结果以服务化输出。
- 数据汇聚:创建数据清洗、加工任务并编排,将编排后的任务提交发布进行周期调度。
- 模型工厂:在数据仓库中,定义数据分层,虚拟ODS层、ODS层、DW层,ADS层等,并将集成的数据,进行分层打标签和数据粗出。
- 运维监控:将发布至生产环境的任务进行统一运维监控保证任务稳定运行。
- 数据质量:对数据加工全流程提供质量监管和校验及时发现问题,减少数据污染。
- 数据服务:将加工、融合后的数据表快速生成数据API、加速数据流动,对外部数据应用提供数据支持。

- 数据集成:支持多种数据仓库引擎配置,包括oracle、mysql、sqlserver、hbase、es、hive等数十种,同时支持在线数据源连接配置,可以同时配置多种数据源连接。支持数据表采集、Excel文件数据采集、自定义SQL
本文详述了从零开始建设数据中台的过程,重点在于数据服务开发,涵盖数据开发流程、数据挖掘及其重要步骤。数据开发涉及数据汇聚、数据建模、运维监控和数据服务提供。数据挖掘则包括信息收集、数据集成、清理、变换直至模式评估的全过程。此外,文章还介绍了数据集市和数据集的概念及其特性,强调它们在特定业务领域和数据分析中的作用。
最低0.47元/天 解锁文章
2868

被折叠的 条评论
为什么被折叠?



