LlamaFactory可视化微调大模型 - 参数详解

LlamaFactory 前言

LLaMA Factory 是一个用于微调大型语言模型的强大工具,特别是针对 LLaMA 系列模型。

可以适应不同的模型架构和大小。

支持多种微调技术,如全参数微调、LoRALow-Rank Adaptation )、QLoRAQuantized LoRA )等。

还给我们提供了简单实用的命令行接口。

支持多 cpu 训练,多任务微调,还有各种内存优化技术,如梯度检查点、梯度累积等。

支持混合精度训练,提高训练效率。

本文不再赘述 LlamaFactory 的安装过程

LlamaFactory参数基本设置

打开我们 LlamaFactoryweb 运行界面,进入根目录执行下列命令:

llamafactory-cli webui

看到下列界面

在浏览器打开我们开启的 webui 界面 http://127.0.0.1:7860

我们依次来解释每个参数的选择:

这里是语言选择

选择 zh 即可。

模型选择

选择适合自己的模型,这里都会从 Hugging Face 里面下载,

这一步是自定义路径

一般就用选择好的默认路径即可。

微调方法:

这里有三种,full全参数微调, Freeze(冻结部分参数) LoRA&

LLAMA(Large Language Model Agent for Multi-purpose Applications)是一种基于大语言模型的应用框架,而Qwen是一个开源的语言模型,常用于问答场景。要在没有GPU的电脑上部署Qwen2,你需要通过lamma-factory进行简化安装和配置。以下是大致步骤: 1. **环境准备**: - 安装Python基础环境(包括pip) - 确保已安装必要的依赖,如TensorFlow(可以选择CPU版本) ```sh pip install python==3.8 pip install numpy tensorflow-cpu ``` 2. **获取模型**: - 从GitHub或其他官方源下载预训练的Qwen模型Llama-factory通常会提供适用于CPU的模型。 ```sh git clone https://github.com/qwen-project/qwen.git cd qwen ``` 3. **配置**: - 进入模型目录,检查`lama_factory/config.py`文件,将`device`设置为`cpu`,确保不会尝试使用GPU资源。 4. **初始化模型工厂**: ```python from lama_factory import LlamaFactory factory = LlamaFactory(config_file='lama_factory/config.yaml') ``` 5. **加载并运行模型**: - 使用工厂创建Qwen实例,并在需要的时候进行交互。 ```python lama = factory.create_agent() response = lama.generate_response(prompt="你好,我是Qwen") print(response) ``` 6. **处理输入和输出**: - 将用户的问题作为prompt传递给模型,接收并打印其响应。 7. **启动服务**: 如果你想构建一个本地服务供外部访问,可以使用`lama_factory.run_server()`,指定监听的端口。 注意:由于Qwen的计算需求较大,运行在CPU上可能会较慢。如果对速度有较高要求,可以考虑使用更小的模型或者分布式计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我码玄黄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值